# Level of Each node in a Tree from source node (using BFS)

BFS(Breadth First Search) is a graph traversal technique where a node and its neighbors are visited first and then the neighbors of neighbors. In simple terms it traverses level wise from the source. First it traverses level 1 nodes (direct neighbors of source node) and then level 2 nodes (neighbors of neighbors of source node) and so on.

Now, suppose if we have to know at which level all the nodes are at (from source node). Then BFS can be used to determine the level of each node.

Examples:

```Input : Output :  Node      Level
0          0
1          1
2          1
3          2
4          2
5          2
6          2
7          3

Explanation : ```

## C++

 `// CPP Program to determine level of each node ` `// and print level ` `#include ` `#include ` `#include ` `using` `namespace` `std; ` ` `  `// function to determine level of each node starting ` `// from x using BFS ` `void` `printLevels(vector<``int``> graph[], ``int` `V, ``int` `x) ` `{ ` `    ``// array to store level of each node ` `    ``int` `level[V]; ` `    ``bool` `marked[V]; ` ` `  `    ``// create a queue ` `    ``queue<``int``> que; ` ` `  `    ``// enqueue element x ` `    ``que.push(x); ` ` `  `    ``// initialize level of source node to 0 ` `    ``level[x] = 0; ` ` `  `    ``// marked it as visited ` `    ``marked[x] = ``true``; ` ` `  `    ``// do until queue is empty ` `    ``while` `(!que.empty()) { ` ` `  `        ``// get the first element of queue ` `        ``x = que.front(); ` ` `  `        ``// dequeue element ` `        ``que.pop(); ` ` `  `        ``// traverse neighbors of node x ` `        ``for` `(``int` `i = 0; i < graph[x].size(); i++) { ` `            ``// b is neighbor of node x ` `            ``int` `b = graph[x][i]; ` ` `  `            ``// if b is not marked already ` `            ``if` `(!marked[b]) { ` ` `  `                ``// enqueue b in queue ` `                ``que.push(b); ` ` `  `                ``// level of b is level of x + 1 ` `                ``level[b] = level[x] + 1; ` ` `  `                ``// mark b ` `                ``marked[b] = ``true``; ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// display all nodes and their levels ` `    ``cout << ``"Nodes"` `         ``<< ``"    "` `         ``<< ``"Level"` `<< endl; ` `    ``for` `(``int` `i = 0; i < V; i++) ` `        ``cout << ``" "` `<< i << ``"   -->   "` `<< level[i] << endl; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``// adjacency graph for tree ` `    ``int` `V = 8; ` `    ``vector<``int``> graph[V]; ` ` `  `    ``graph.push_back(1); ` `    ``graph.push_back(2); ` `    ``graph.push_back(3); ` `    ``graph.push_back(4); ` `    ``graph.push_back(5); ` `    ``graph.push_back(5); ` `    ``graph.push_back(6); ` `    ``graph.push_back(7); ` ` `  `    ``// call levels function with source as 0 ` `    ``printLevels(graph, V, 0); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java Program to determine level of each node  ` `// and print level  ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` `     `  `// function to determine level of each node starting  ` `// from x using BFS  ` `static` `void` `printLevels(Vector> graph, ``int` `V, ``int` `x)  ` `{  ` `    ``// array to store level of each node  ` `    ``int` `level[] = ``new` `int``[V];  ` `    ``boolean` `marked[] = ``new` `boolean``[V];  ` ` `  `    ``// create a queue  ` `    ``Queue que = ``new` `LinkedList();  ` ` `  `    ``// enqueue element x  ` `    ``que.add(x);  ` ` `  `    ``// initialize level of source node to 0  ` `    ``level[x] = ``0``;  ` ` `  `    ``// marked it as visited  ` `    ``marked[x] = ``true``;  ` ` `  `    ``// do until queue is empty  ` `    ``while` `(que.size() > ``0``)  ` `    ``{  ` ` `  `        ``// get the first element of queue  ` `        ``x = que.peek();  ` ` `  `        ``// dequeue element  ` `        ``que.remove();  ` ` `  `        ``// traverse neighbors of node x  ` `        ``for` `(``int` `i = ``0``; i < graph.get(x).size(); i++)  ` `        ``{  ` `            ``// b is neighbor of node x  ` `            ``int` `b = graph.get(x).get(i);  ` ` `  `            ``// if b is not marked already  ` `            ``if` `(!marked[b]) ` `            ``{  ` ` `  `                ``// enqueue b in queue  ` `                ``que.add(b);  ` ` `  `                ``// level of b is level of x + 1  ` `                ``level[b] = level[x] + ``1``;  ` ` `  `                ``// mark b  ` `                ``marked[b] = ``true``;  ` `            ``}  ` `        ``}  ` `    ``}  ` ` `  `    ``// display all nodes and their levels  ` `    ``System.out.println( ``"Nodes"` `                        ``+ ``" "` `                        ``+ ``"Level"``);  ` `    ``for` `(``int` `i = ``0``; i < V; i++)  ` `        ``System.out.println(``" "` `+ i +``" --> "` `+ level[i] );  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `main(String args[]) ` `{  ` `    ``// adjacency graph for tree  ` `    ``int` `V = ``8``;  ` `    ``Vector> graph=``new` `Vector>();  ` `     `  `    ``for``(``int` `i = ``0``; i < V + ``1``; i++) ` `    ``graph.add(``new` `Vector()); ` ` `  `    ``graph.get(``0``).add(``1``);  ` `    ``graph.get(``0``).add(``2``);  ` `    ``graph.get(``1``).add(``3``);  ` `    ``graph.get(``1``).add(``4``);  ` `    ``graph.get(``1``).add(``5``);  ` `    ``graph.get(``2``).add(``5``);  ` `    ``graph.get(``2``).add(``6``);  ` `    ``graph.get(``6``).add(``7``);  ` ` `  `    ``// call levels function with source as 0  ` `    ``printLevels(graph, V, ``0``);  ` `}  ` `}  ` ` `  `// This code is contributed by Arnab Kundu `

## Python3

 `# Python3 Program to determine level  ` `# of each node and print level  ` `import` `queue  ` ` `  `# function to determine level of  ` `# each node starting from x using BFS  ` `def` `printLevels(graph, V, x): ` `     `  `    ``# array to store level of each node  ` `    ``level ``=` `[``None``] ``*` `V  ` `    ``marked ``=` `[``False``] ``*` `V  ` ` `  `    ``# create a queue  ` `    ``que ``=` `queue.Queue() ` ` `  `    ``# enqueue element x  ` `    ``que.put(x)  ` ` `  `    ``# initialize level of source  ` `    ``# node to 0  ` `    ``level[x] ``=` `0` ` `  `    ``# marked it as visited  ` `    ``marked[x] ``=` `True` ` `  `    ``# do until queue is empty  ` `    ``while` `(``not` `que.empty()): ` ` `  `        ``# get the first element of queue  ` `        ``x ``=` `que.get()  ` ` `  `        ``# traverse neighbors of node x ` `        ``for` `i ``in` `range``(``len``(graph[x])): ` `             `  `            ``# b is neighbor of node x  ` `            ``b ``=` `graph[x][i]  ` ` `  `            ``# if b is not marked already  ` `            ``if` `(``not` `marked[b]):  ` ` `  `                ``# enqueue b in queue  ` `                ``que.put(b)  ` ` `  `                ``# level of b is level of x + 1  ` `                ``level[b] ``=` `level[x] ``+` `1` ` `  `                ``# mark b  ` `                ``marked[b] ``=` `True` ` `  `    ``# display all nodes and their levels  ` `    ``print``(``"Nodes"``, ``" "``, ``"Level"``) ` `    ``for` `i ``in` `range``(V): ` `        ``print``(``" "``,i,  ``" --> "``, level[i]) ` ` `  `# Driver Code  ` `if` `__name__ ``=``=` `'__main__'``: ` ` `  `    ``# adjacency graph for tree  ` `    ``V ``=` `8` `    ``graph ``=` `[[] ``for` `i ``in` `range``(V)] ` ` `  `    ``graph[``0``].append(``1``)  ` `    ``graph[``0``].append(``2``)  ` `    ``graph[``1``].append(``3``)  ` `    ``graph[``1``].append(``4``)  ` `    ``graph[``1``].append(``5``)  ` `    ``graph[``2``].append(``5``)  ` `    ``graph[``2``].append(``6``)  ` `    ``graph[``6``].append(``7``)  ` ` `  `    ``# call levels function with source as 0  ` `    ``printLevels(graph, V, ``0``) ` ` `  `# This code is contributed by PranchalK `

## C#

 `// C# Program to determine level of each node  ` `// and print level  ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` `     `  `// function to determine level of each node starting  ` `// from x using BFS  ` `static` `void` `printLevels(List> graph,  ` `                                  ``int` `V, ``int` `x)  ` `{  ` `    ``// array to store level of each node  ` `    ``int` `[]level = ``new` `int``[V];  ` `    ``Boolean []marked = ``new` `Boolean[V];  ` ` `  `    ``// create a queue  ` `    ``Queue<``int``> que = ``new` `Queue<``int``>();  ` ` `  `    ``// enqueue element x  ` `    ``que.Enqueue(x);  ` ` `  `    ``// initialize level of source node to 0  ` `    ``level[x] = 0;  ` ` `  `    ``// marked it as visited  ` `    ``marked[x] = ``true``;  ` ` `  `    ``// do until queue is empty  ` `    ``while` `(que.Count > 0)  ` `    ``{  ` ` `  `        ``// get the first element of queue  ` `        ``x = que.Peek();  ` ` `  `        ``// dequeue element  ` `        ``que.Dequeue();  ` ` `  `        ``// traverse neighbors of node x  ` `        ``for` `(``int` `i = 0; i < graph[x].Count; i++)  ` `        ``{  ` `            ``// b is neighbor of node x  ` `            ``int` `b = graph[x][i];  ` ` `  `            ``// if b is not marked already  ` `            ``if` `(!marked[b]) ` `            ``{  ` ` `  `                ``// enqueue b in queue  ` `                ``que.Enqueue(b);  ` ` `  `                ``// level of b is level of x + 1  ` `                ``level[b] = level[x] + 1;  ` ` `  `                ``// mark b  ` `                ``marked[b] = ``true``;  ` `            ``}  ` `        ``}  ` `    ``}  ` ` `  `    ``// display all nodes and their levels  ` `    ``Console.WriteLine(``"Nodes"` `+ ``" "` `+ ``"Level"``);  ` `    ``for` `(``int` `i = 0; i < V; i++)  ` `        ``Console.WriteLine(``" "` `+ i +``" --> "` `+ level[i]);  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `Main(String []args) ` `{  ` `    ``// adjacency graph for tree  ` `    ``int` `V = 8;  ` `    ``List> graph = ``new` `List>();  ` `     `  `    ``for``(``int` `i = 0; i < V + 1; i++) ` `        ``graph.Add(``new` `List<``int``>()); ` ` `  `    ``graph.Add(1);  ` `    ``graph.Add(2);  ` `    ``graph.Add(3);  ` `    ``graph.Add(4);  ` `    ``graph.Add(5);  ` `    ``graph.Add(5);  ` `    ``graph.Add(6);  ` `    ``graph.Add(7);  ` ` `  `    ``// call levels function with source as 0  ` `    ``printLevels(graph, V, 0);  ` `}  ` `} ` ` `  `// This code is contributed by Princi Singh `

Output:

```Nodes    Level
0   -->   0
1   -->   1
2   -->   1
3   -->   2
4   -->   2
5   -->   2
6   -->   2
7   -->   3
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

5

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.