# Length of the longest subsequence such that xor of adjacent elements is non-decreasing

• Difficulty Level : Easy
• Last Updated : 04 Jun, 2021

Given a sequence arr of N positive integers, the task is to find the length of the longest subsequence such that xor of adjacent integers in the subsequence must be non-decreasing.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 8, arr = {1, 100, 3, 64, 0, 5, 2, 15}
Output:
The subsequence of maximum length is {1, 3, 0, 5, 2, 15}
with XOR of adjacent elements as {2, 3, 5, 7, 13}
Input: N = 3, arr = {1, 7, 10}
Output:
The subsequence of maximum length is {1, 3, 7}
with XOR of adjacent elements as {2, 4}.

Approach:

• This problem can be solved using dynamic programming where dp[i] will store the length of the longest valid subsequence that ends at index i.
• First, store the xor of all the pairs of elements i.e. arr[i] ^ arr[j] and the pair (i, j) also and then sort them according to the value of xor as they need to be non-decreasing.
• Now if the pair (i, j) is considered then the length of the longest subsequence that ends at j will be max(dp[j], 1 + dp[i]). In this way, calculate the maximum possible value of dp[] array for each position and then take the maximum of them.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to find the length of the longest``// subsequence such that the XOR of adjacent``// elements in the subsequence must``// be non-decreasing``int` `LongestXorSubsequence(``int` `arr[], ``int` `n)``{` `    ``vector > > v;` `    ``for` `(``int` `i = 0; i < n; i++) {``        ``for` `(``int` `j = i + 1; j < n; j++) {` `            ``// Computing xor of all the pairs``            ``// of elements and store them``            ``// along with the pair (i, j)``            ``v.push_back(make_pair(arr[i] ^ arr[j],``                                  ``make_pair(i, j)));``        ``}``    ``}` `    ``// Sort all possible xor values``    ``sort(v.begin(), v.end());` `    ``int` `dp[n];` `    ``// Initialize the dp array``    ``for` `(``int` `i = 0; i < n; i++) {``        ``dp[i] = 1;``    ``}` `    ``// Calculating the dp array``    ``// for each possible position``    ``// and calculating the max length``    ``// that ends at a particular index``    ``for` `(``auto` `i : v) {``        ``dp[i.second.second]``            ``= max(dp[i.second.second],``                  ``1 + dp[i.second.first]);``    ``}` `    ``int` `ans = 1;` `    ``// Taking maximum of all position``    ``for` `(``int` `i = 0; i < n; i++)``        ``ans = max(ans, dp[i]);` `    ``return` `ans;``}` `// Driver code``int` `main()``{` `    ``int` `arr[] = { 2, 12, 6, 7, 13, 14, 8, 6 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``cout << LongestXorSubsequence(arr, n);` `    ``return` `0;``}`

## Python3

 `# Python3 implementation of the approach` `# Function to find the length of the longest``# subsequence such that the XOR of adjacent``# elements in the subsequence must``# be non-decreasing``def` `LongestXorSubsequence(arr, n):` `    ``v ``=` `[]` `    ``for` `i ``in` `range``(``0``, n):``        ``for` `j ``in` `range``(i ``+` `1``, n):` `             ``# Computing xor of all the pairs``            ``# of elements and store them``            ``# along with the pair (i, j)``            ``v.append([(arr[i] ^ arr[j]), (i, j)])` `        ``# v.push_back(make_pair(arr[i] ^ arr[j], make_pair(i, j)))``        ` `    ``# Sort all possible xor values``    ``v.sort()``    ` `    ``# Initialize the dp array``    ``dp ``=` `[``1` `for` `x ``in` `range``(``88``)]` `    ``# Calculating the dp array``    ``# for each possible position``    ``# and calculating the max length``    ``# that ends at a particular index``    ``for` `a, b ``in` `v:``        ``dp[b[``1``]] ``=` `max``(dp[b[``1``]], ``1` `+` `dp[b[``0``]])``    ` `    ``ans ``=` `1` `    ``# Taking maximum of all position``    ``for` `i ``in` `range``(``0``, n):``        ``ans ``=` `max``(ans, dp[i])` `    ``return` `ans` `# Driver code``arr ``=` `[ ``2``, ``12``, ``6``, ``7``, ``13``, ``14``, ``8``, ``6` `]``n ``=` `len``(arr)``print``(LongestXorSubsequence(arr, n))` `# This code is contributed by Sanjit Prasad`

## Javascript

 ``
Output
`5`

Time Complexity: O(N* N)
Auxiliary Space: O(N)

My Personal Notes arrow_drop_up