# Length of the longest alternating subarray

Given an array of N including positive and negative numbers only. The task is to find the length of the longest alternating (means negative-positive-negative or positive-negative-positive) subarray present in the array. **Examples:**

Input:a[] = {-5, -1, -1, 2, -2, -3}Output:3 The subarray {-1, 2, -2}Input:a[] = {1, -5, 1, -5}Output:4

**Approach:** The following steps are followed to solve the problem:

- Initially initialize cnt as 1.
- Iterate among the array elements, check if it has an alternate sign.
- Increase the cnt by 1 if it has a alternate sign.
- If it does not has an alternate sign, then re-initialize cnt by 1.

Below is the implementation of the above approach:

## C++

`// C++ program to find the longest alternating` `// subarray in an array of N number` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the longest subarray` `int` `longestAlternatingSubarray(` `int` `a[], ` `int` `n)` `{` ` ` `// Length of longest alternating` ` ` `int` `longest = 1;` ` ` `int` `cnt = 1;` ` ` `// Iterate in the array` ` ` `for` `(` `int` `i = 1; i < n; i++) {` ` ` `// Check for alternate` ` ` `if` `(a[i] * a[i - 1] < 0) {` ` ` `cnt++;` ` ` `longest = max(longest, cnt);` ` ` `}` ` ` `else` ` ` `cnt = 1;` ` ` `}` ` ` `return` `longest;` `}` `/* Driver program to test above functions*/` `int` `main()` `{` ` ` `int` `a[] = { -5, -1, -1, 2, -2, -3 };` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(a[0]);` ` ` `// Function to find the longest subarray` ` ` `cout << longestAlternatingSubarray(a, n);` ` ` `return` `0;` `}` |

## Java

`// Java program to find the longest alternating` `// subarray in an array of N number` `class` `GFG` `{` ` ` `// Function to find the longest subarray` ` ` `static` `int` `longestAlternatingSubarray(` `int` `a[], ` `int` `n)` ` ` `{` ` ` `// Length of longest alternating` ` ` `int` `longest = ` `1` `;` ` ` `int` `cnt = ` `1` `;` ` ` ` ` `// Iterate in the array` ` ` `for` `(` `int` `i = ` `1` `; i < n; i++)` ` ` `{` ` ` ` ` `// Check for alternate` ` ` `if` `(a[i] * a[i - ` `1` `] < ` `0` `)` ` ` `{` ` ` `cnt++;` ` ` `longest = Math.max(longest, cnt);` ` ` `}` ` ` `else` ` ` `cnt = ` `1` `;` ` ` `}` ` ` `return` `longest;` ` ` `}` ` ` ` ` `/* Driver program to test above functions*/` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `int` `a[] = { -` `5` `, -` `1` `, -` `1` `, ` `2` `, -` `2` `, -` `3` `};` ` ` `int` `n = a.length ;` ` ` ` ` `// Function to find the longest subarray` ` ` `System.out.println(longestAlternatingSubarray(a, n));` ` ` `}` `}` `// This code is contributed by Ryuga` |

## Python 3

`# Python3 program to find the longest alternating` `# subarray in an array of N number` `# Function to find the longest subarray` `def` `longestAlternatingSubarray(a, n):` ` ` ` ` `# Length of longest alternating` ` ` `longest ` `=` `1` ` ` `cnt ` `=` `1` ` ` `# Iterate in the array` ` ` `i ` `=` `1` ` ` `while` `i < n:` ` ` `# Check for alternate` ` ` `if` `(a[i] ` `*` `a[i ` `-` `1` `] < ` `0` `):` ` ` `cnt ` `=` `cnt ` `+` `1` ` ` `longest ` `=` `max` `(longest, cnt)` ` ` ` ` `else` `:` ` ` `cnt ` `=` `1` ` ` `i ` `=` `i ` `+` `1` ` ` ` ` `return` `longest` `# Driver Code` `a ` `=` `[ ` `-` `5` `, ` `-` `1` `, ` `-` `1` `, ` `2` `, ` `-` `2` `, ` `-` `3` `]` `n ` `=` `len` `(a)` `# Function to find the longest subarray` `print` `(longestAlternatingSubarray(a, n))` `# This code is contributed` `# by shashank_sharma` |

## C#

`// C# program to find the longest alternating` `// subarray in an array of N number` `using` `System;` `class` `GFG` `{` `// Function to find the longest subarray` `static` `int` `longestAlternatingSubarray(` `int` `[]a,` ` ` `int` `n)` `{` ` ` `// Length of longest alternating` ` ` `int` `longest = 1;` ` ` `int` `cnt = 1;` ` ` `// Iterate in the array` ` ` `for` `(` `int` `i = 1; i < n; i++)` ` ` `{` ` ` `// Check for alternate` ` ` `if` `(a[i] * a[i - 1] < 0)` ` ` `{` ` ` `cnt++;` ` ` `longest = Math.Max(longest, cnt);` ` ` `}` ` ` `else` ` ` `cnt = 1;` ` ` `}` ` ` `return` `longest;` `}` `// Driver Code` `public` `static` `void` `Main()` `{` ` ` `int` `[]a = { -5, -1, -1, 2, -2, -3 };` ` ` `int` `n = a.Length;` ` ` `// Function to find the longest subarray` ` ` `Console.Write(longestAlternatingSubarray(a, n));` `}` `}` `// This code is contributed` `// by Akanksha Rai` |

## PHP

`<?php` `// PHP program to find the longest alternating` `// subarray in an array of N number` `// Function to find the longest subarray` `function` `longestAlternatingSubarray(` `$a` `, ` `$n` `)` `{` ` ` ` ` `// Length of longest alternating` ` ` `$longest` `= 1;` ` ` `$cnt` `= 1;` ` ` `// Iterate in the array` ` ` `for` `(` `$i` `= 1; ` `$i` `< ` `$n` `; ` `$i` `++)` ` ` `{` ` ` `// Check for alternate` ` ` `if` `(` `$a` `[` `$i` `] * ` `$a` `[` `$i` `- 1] < 0)` ` ` `{` ` ` `$cnt` `++;` ` ` `$longest` `= max(` `$longest` `, ` `$cnt` `);` ` ` `}` ` ` `else` ` ` `$cnt` `= 1;` ` ` `}` ` ` `return` `$longest` `;` `}` `// Driver Code` `$a` `= ` `array` `(-5, -1, -1, 2, -2, -3 );` `$n` `= sizeof(` `$a` `);` `// Function to find the longest subarray` `echo` `longestAlternatingSubarray(` `$a` `, ` `$n` `);` `// This code is contributed by akt_mit` `?>` |

## Javascript

`<script>` `// JavaScript program to find the longest alternating` `// subarray in an array of N number` `// Function to find the longest subarray` `function` `longestAlternatingSubarray(a, n)` `{` ` ` `// Length of longest alternating` ` ` `let longest = 1;` ` ` `let cnt = 1;` ` ` `// Iterate in the array` ` ` `for` `(let i = 1; i < n; i++) {` ` ` `// Check for alternate` ` ` `if` `(a[i] * a[i - 1] < 0) {` ` ` `cnt++;` ` ` `longest = Math.max(longest, cnt);` ` ` `}` ` ` `else` ` ` `cnt = 1;` ` ` `}` ` ` `return` `longest;` `}` `/* Driver program to test above functions*/` ` ` `let a = [ -5, -1, -1, 2, -2, -3 ];` ` ` `let n = a.length;` ` ` `// Function to find the longest subarray` ` ` `document.write(longestAlternatingSubarray(a, n));` `// This code is contributed by Surbhi Tyagi.` `</script>` |

**Output:**

3

**Time Complexity:** O(N)**Auxiliary Space: **O(1)