# Length of the largest substring which have character with frequency greater than or equal to half of the substring

• Difficulty Level : Hard
• Last Updated : 03 Nov, 2021

Given a string S consisting of characters from ‘a’ to ‘z’. The task is to find the length of the largest substring of S which contains a character whose frequency in the sub-string is greater than or equal to half of the length of the substring.
Note: For odd-length substring, to calculate half-length consider integer division. For example, half of 11 is 5.

Examples:

```Input : S = "ababbbacbcbcca"
Output : 13
Substring from index 1(0-based indexing) to index 13,
"babbbacbcbcca" have b's frequency equals to 6 which is
equal to half of the length of substring (13/2 = 6).

Input : S = "abcde"
Output : 3 ```

Simple Approach: The idea is to find all the substring of S and for each substring find the frequency of each character and compare it with half of the length of the substring. Now, among all substrings satisfying the condition, the output is the length of the one having the largest length.

Efficient Approach
First, observe there can be only 26 distinct characters in the string S. So, consider each character one by one for having a frequency greater than or equal to the length of the substring.
So, to find the length of the longest possible sub-string which satisfies the condition, for each character we will make the prefix array of the count of the character. For example, for S = “abacdaef”, the prefix array for ‘a’ will be, say freq[], [1, 1, 2, 2, 2, 3, 3, 3].
We are looking for the following conditions to satisfy:

`freq[r] - freq[l - 1] >= (r - l)/2, where l, r are the indices.`

Also, we can write,

`(2 * freq[r]) - r >= (2 * freq[l - 1]) - l`

So, find two arrays r[] and l[], where r[i] = (2 * freq[i]) – i and l[i] = (2 * freq[l – 1]) – l, for 1 <= i <= length of S.
Now, for every i in r[], find the lower bound in l[] using binary search such that the index is minimum in l[], say j.
So, i – j + 1 is one of the solutions. Find the maximum one.
Then loop the above method for each character.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the above approach` `#include ``using` `namespace` `std;` `// Function to return the length of the longest``// sub string having frequency of a character``// greater than half of the length of the``// sub string``int` `maxLength(string s, ``int` `n)``{``    ``int` `ans = INT_MIN;``    ``vector<``int``> A, L, R;``    ``int` `freq[n + 5];` `    ``// for each of the character 'a' to 'z'``    ``for` `(``int` `i = 0; i < 26; i++) {``        ``int` `count = 0;``        ``memset``(freq, 0, ``sizeof` `freq);` `        ``// finding frequency prefix array of the``        ``// character``        ``for` `(``int` `j = 0; j < n; j++) {``            ``if` `(s[j] - ``'a'` `== i)``                ``count++;``            ``freq[j] = count;``        ``}` `        ``// Finding the r[] and l[] arrays.``        ``for` `(``int` `j = 0; j < n; j++) {``            ``L.push_back((2 * freq[j - 1]) - j);``            ``R.push_back((2 * freq[j]) - j);``        ``}` `        ``int` `max_len = INT_MIN;``        ``int` `min_val = INT_MAX;` `        ``// for each j from 0 to n``        ``for` `(``int` `j = 0; j < n; j++) {``            ``min_val = min(min_val, L[j]);``            ``A.push_back(min_val);` `            ``int` `l = 0, r = j;` `            ``// Finding the lower bound of i.``            ``while` `(l <= r) {``                ``int` `mid = (l + r) >> 1;``                ``if` `(A[mid] <= R[j]) {``                    ``max_len = max(max_len, j - mid + 1);``                    ``r = mid - 1;``                ``}``                ``else` `{``                    ``l = mid + 1;``                ``}``            ``}``        ``}` `        ``// storing the maximum value of i - j + 1``        ``ans = max(ans, max_len);` `        ``// clearing all the vector so that it clearing``        ``// be use for other character.``        ``A.clear();``        ``R.clear();``        ``L.clear();``    ``}` `    ``return` `ans;``}` `// Driver Code``int` `main()``{``    ``string s = ``"ababbbacbcbcca"``;``    ``int` `n = s.length();` `    ``cout << maxLength(s, n) << ``'\n'``;``    ` `    ``return` `0;``}`

## Java

 `// Java implementation of the above approach``import` `java.util.*;` `class` `GFG``{` `// Function to return the length of the longest``// sub string having frequency of a character``// greater than half of the length of the``// sub string``static` `int` `maxLength(String s, ``int` `n)``{``    ``int` `ans = Integer.MIN_VALUE;``    ``Vector A = ``new` `Vector();``    ``Vector L = ``new` `Vector();``    ``Vector R = ``new` `Vector();` `    ``int` `[]freq = ``new` `int``[n + ``5``];` `    ``// for each of the character 'a' to 'z'``    ``for` `(``int` `i = ``0``; i < ``26``; i++)``    ``{``        ``int` `count = ``0``;``        ` `        ``// finding frequency prefix array of the``        ``// character``        ``for` `(``int` `j = ``0``; j < n; j++)``        ``{``            ``if` `(s.charAt(j) - ``'a'` `== i)``                ``count++;``            ``freq[j] = count;``        ``}` `        ``// Finding the r[] and l[] arrays.``        ``for` `(``int` `j = ``1``; j < n; j++)``        ``{``            ``L.add((``2` `* freq[j - ``1``]) - j);``            ``R.add((``2` `* freq[j]) - j);``        ``}` `        ``int` `max_len = Integer.MIN_VALUE;``        ``int` `min_val = Integer.MAX_VALUE;` `        ``// for each j from 0 to n``        ``for` `(``int` `j = ``0``; j < L.size(); j++)``        ``{``            ``min_val = Math.min(min_val, L.get(j));``            ``A.add(min_val);` `            ``int` `l = ``0``, r = j;` `            ``// Finding the lower bound of i.``            ``while` `(l <= r)``            ``{``                ``int` `mid = (l + r) >> ``1``;``                ``if` `(A.get(mid) <= R.get(j))``                ``{``                    ``max_len = Math.max(max_len,``                                       ``j - mid + ``1``);``                    ``r = mid - ``1``;``                ``}``                ``else``                ``{``                    ``l = mid + ``1``;``                ``}``            ``}``        ``}` `        ``// storing the maximum value of i - j + 1``        ``ans = Math.max(ans, max_len);` `        ``// clearing all the vector so that it clearing``        ``// be use for other character.``        ``A.clear();``        ``R.clear();``        ``L.clear();``    ``}``    ``return` `ans;``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``String s = ``"ababbbacbcbcca"``;``    ``int` `n = s.length();` `    ``System.out.println(maxLength(s, n));``}``}` `// This code is contributed by Princi Singh`

## Python3

 `# Python3 implementation of the above approach``import` `sys` `# Function to return the length``# of the longest sub string``# having frequency of a character``# greater than half of the length``# of the sub string``def` `maxLength(s, n) :``    ` `    ``ans ``=` `-``(sys.maxsize ``+` `1``);``    ``A, L, R ``=` `[], [], [];``    ``freq ``=` `[``0``] ``*` `(n ``+` `5``);` `    ``# for each of the character 'a' to 'z'``    ``for` `i ``in` `range``(``26``) :``        ``count ``=` `0``;``        ` `        ``# finding frequency prefix array``        ``# of the character``        ``for` `j ``in` `range``(n) :``            ``if` `(``ord``(s[j]) ``-` `ord``(``'a'``) ``=``=` `i) :``                ``count ``+``=` `1``;``                ` `            ``freq[j] ``=` `count;``        ` `        ``# Finding the r[] and l[] arrays.``        ``for` `j ``in` `range``(n) :``            ``L.append((``2` `*` `freq[j ``-` `1``]) ``-` `j);``            ``R.append((``2` `*` `freq[j]) ``-` `j);``        ` `        ``max_len ``=` `-``(sys.maxsize ``+` `1``);``        ``min_val ``=` `sys.maxsize ;` `        ``# for each j from 0 to n``        ``for` `j ``in` `range``(n) :``            ``min_val ``=` `min``(min_val, L[j]);``            ``A.append(min_val);` `            ``l ``=` `0``; r ``=` `j;` `            ``# Finding the lower bound of i.``            ``while` `(l <``=` `r) :``                ``mid ``=` `(l ``+` `r) >> ``1``;``                ``if` `(A[mid] <``=` `R[j]) :``                    ``max_len ``=` `max``(max_len, j ``-` `mid ``+` `1``);``                    ``r ``=` `mid ``-` `1``;``                ` `                ``else` `:``                    ``l ``=` `mid ``+` `1``;` `        ``# storing the maximum value of i - j + 1``        ``ans ``=` `max``(ans, max_len);` `        ``# clearing all the vector so that it can``        ``# be used for other characters.``        ``A.clear();``        ``R.clear();``        ``L.clear();` `    ``return` `ans;` `# Driver Code``if` `__name__ ``=``=` `"__main__"` `:` `    ``s ``=` `"ababbbacbcbcca"``;``    ``n ``=` `len``(s);` `    ``print``(maxLength(s, n));` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the above approach``using` `System;``using` `System.Collections.Generic;` `class` `GFG``{` `// Function to return the length of the longest``// sub string having frequency of a character``// greater than half of the length of the``// sub string``static` `int` `maxLength(String s, ``int` `n)``{``    ``int` `ans = ``int``.MinValue;``    ``List<``int``> A = ``new` `List<``int``>();``    ``List<``int``> L = ``new` `List<``int``>();``    ``List<``int``> R = ``new` `List<``int``>();` `    ``int` `[]freq = ``new` `int``[n + 5];` `    ``// for each of the character 'a' to 'z'``    ``for` `(``int` `i = 0; i < 26; i++)``    ``{``        ``int` `count = 0;``        ` `        ``// finding frequency prefix array of the``        ``// character``        ``for` `(``int` `j = 0; j < n; j++)``        ``{``            ``if` `(s[j] - ``'a'` `== i)``                ``count++;``            ``freq[j] = count;``        ``}` `        ``// Finding the r[] and l[] arrays.``        ``for` `(``int` `j = 1; j < n; j++)``        ``{``            ``L.Add((2 * freq[j - 1]) - j);``            ``R.Add((2 * freq[j]) - j);``        ``}` `        ``int` `max_len = ``int``.MinValue;``        ``int` `min_val = ``int``.MaxValue;` `        ``// for each j from 0 to n``        ``for` `(``int` `j = 0; j < L.Count; j++)``        ``{``            ``min_val = Math.Min(min_val, L[j]);``            ``A.Add(min_val);` `            ``int` `l = 0, r = j;` `            ``// Finding the lower bound of i.``            ``while` `(l <= r)``            ``{``                ``int` `mid = (l + r) >> 1;``                ``if` `(A[mid] <= R[j])``                ``{``                    ``max_len = Math.Max(max_len,``                                       ``j - mid + 1);``                    ``r = mid - 1;``                ``}``                ``else``                ``{``                    ``l = mid + 1;``                ``}``            ``}``        ``}` `        ``// storing the maximum value of i - j + 1``        ``ans = Math.Max(ans, max_len);` `        ``// clearing all the vector so that it can``        ``// be used for other characters.``        ``A.Clear();``        ``R.Clear();``        ``L.Clear();``    ``}``    ``return` `ans;``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``String s = ``"ababbbacbcbcca"``;``    ``int` `n = s.Length;` `    ``Console.WriteLine(maxLength(s, n));``}``}` `// This code is contributed by 29AjayKumar`

## Javascript

 ``
Output:
`13`

Time Complexity: O(26*N*logN)

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up