Given the length of a side a of a triangle and its adjacent angles B and C, the task is to find the remaining two sides of the triangle.
Input: a = 5, B = 62.2, C = 33.5
Output: 4.44, 2.77
Explanation
The remaining two sides of the triangle are b = 4.44488228556699 and c = 2.7733977979419038
Input: a = 12, B = 60, C = 30
Output: 10.39, 5.99
Explanation
The remaining two sides of the triangle are b = 10.392304845413264 and c = 5.999999999999999
Approach:
- The remaining angle can be calculated by the angle sum theorem in a triangle:
- The other two sides of triangle can be computed using sine formula:
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
void findSide( float a, float B, float C)
{
float A = 180 - C - B;
float radA = M_PI * (A / 180);
float radB = M_PI * (B / 180);
float radC = M_PI * (C / 180);
float b = a / sin (radA) * sin (radB);
float c = a / sin (radA) * sin (radC);
cout << fixed << setprecision(15) << b << " " ;
cout << fixed << setprecision(15) << c;
}
int main()
{
int a = 12, B = 60, C = 30;
findSide(a, B, C);
}
|
Java
import java.util.*;
class GFG{
static void findSide( double a, double B,
double C)
{
double A = 180 - C - B;
double radA = (Math.PI * (A / 180 ));
double radB = (Math.PI * (B / 180 ));
double radC = (Math.PI * (C / 180 ));
double b = (a / Math.sin(radA) *
Math.sin(radB));
double c = (a / Math.sin(radA) *
Math.sin(radC));
System.out.printf( "%.15f" , b);
System.out.printf( " %.15f" , c);
}
public static void main(String[] args)
{
int a = 12 , B = 60 , C = 30 ;
findSide(a, B, C);
}
}
|
Python3
import math
def findSide(a, B, C):
A = 180 - C - B
radA = math.pi * (A / 180 )
radB = math.pi * (B / 180 )
radC = math.pi * (C / 180 )
b = a / math.sin(radA) * math.sin(radB)
c = a / math.sin(radA) * math.sin(radC)
return b, c
a = 12
B = 60
C = 30
b, c = findSide(a, B, C)
print (b, c)
|
C#
using System;
class GFG{
static void findSide( float a,
double B, double C)
{
double A = 180 - C - B;
double radA = (Math.PI * (A / 180));
double radB = (Math.PI * (B / 180));
double radC = (Math.PI * (C / 180));
double b = (a / Math.Sin(radA) *
Math.Sin(radB));
double c = (a / Math.Sin(radA) *
Math.Sin(radC));
Console.Write( "{0:F15}" , b);
Console.Write( "{0:F15}" , c);
}
public static void Main(String[] args)
{
int a = 12, B = 60, C = 30;
findSide(a, B, C);
}
}
|
Javascript
<script>
function findSide(a, B, C)
{
var A = 180 - C - B;
var radA = Math.PI * (A / 180);
var radB = Math.PI * (B / 180);
var radC = Math.PI * (C / 180);
var b = a / Math.sin(radA) * Math.sin(radB);
var c = a / Math.sin(radA) * Math.sin(radC);
document.write( b + " " );
document.write( c);
}
var a = 12, B = 60, C = 30;
findSide(a, B, C);
</script>
|
Output:
10.392304845413264 5.999999999999999
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
28 Jan, 2022
Like Article
Save Article