Length of longest subsequence having absolute difference of all pairs divisible by K

Given an array, arr[] of size N and an integer K, the task is to find the length of the longest subsequence from the given array such that the absolute difference of each pair in the subsequence is divisible by K.

Examples:

Input: arr[] = {10, 12, 16, 20, 32, 15}, K = 4  
Output:
Explanation:
The Longest subsequence in which the absolute difference of each pair divisible by K (= 4) are {12, 26, 20, 32}.
Therefore, the required output is 4

Input: arr[] = {12, 3, 13, 5, 21, 11}, K = 3
Output: 3

 

Naive Approach: The simplest approach to solve this problem is to generate all possible subsequence of the given array and print the length of the longest subsequence having an absolute difference of each pair divisible by K.



Time Complexity: O(2N)
Auxiliary Space: O(N)

Efficient Approach: To optimize the above approach the idea is to use Hashing based on the following observation:

Absolute difference of all possible pairs of a subset having the equal value of arr[i] % K must be divisible by K.

Mathematical Proof:
If arr[i] % K = arr[j] % K
=> abs(arr[i] – arr[j]) % K must be 0.

Follow the steps below to solve the problem:

Below is the implementation of the above approach :

C++14

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++14 program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length
// of subsequence that satisfy
// the given condition
int maxLenSub(int arr[],
              int N, int K)
{
    // Store the frequencies
    // of arr[i] % K
    int hash[K];
 
    // Initilize hash[] array
    memset(hash, 0, sizeof(hash));
 
    // Traverse the given array
    for (int i = 0; i < N; i++) {
 
        // Update frequency of
        // arr[i] % K
        hash[arr[i] % K]++;
    }
 
    // Stores the length of
    // the longest subsequence that
    // satisfy the given condition
    int LenSub = 0;
 
    // Find the maximum element
    // in hash[] array
    for (int i = 0; i < K; i++) {
        LenSub = max(LenSub, hash[i]);
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 12, 3, 13, 5, 21, 11 };
    int K = 3;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << maxLenSub(arr, N, K);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to find the length
// of subsequence that satisfy
// the given condition
static int maxLenSub(int arr[],
                     int N, int K)
{
  // Store the frequencies
  // of arr[i] % K
  int []hash = new int[K];
 
  // Traverse the given array
  for (int i = 0; i < N; i++)
  {
    // Update frequency of
    // arr[i] % K
    hash[arr[i] % K]++;
  }
 
  // Stores the length of
  // the longest subsequence that
  // satisfy the given condition
  int LenSub = 0;
 
  // Find the maximum element
  // in hash[] array
  for (int i = 0; i < K; i++)
  {
    LenSub = Math.max(LenSub,
                      hash[i]);
  }
   
  return LenSub;
}
 
// Driver Code
public static void main(String[] args)
{
  int arr[] = {12, 3, 13, 5, 21, 11};
  int K = 3;
  int N = arr.length;
  System.out.print(maxLenSub(arr, N, K));
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
 
# Function to find the length
# of subsequence that satisfy
# the given condition
def maxLenSub(arr, N, K):
     
    # Store the frequencies
    # of arr[i] % K
    hash = [0] * K
 
    # Traverse the given array
    for i in range(N):
 
        # Update frequency of
        # arr[i] % K
        hash[arr[i] % K] += 1
 
    # Stores the length of the
    # longest subsequence that
    # satisfy the given condition
    LenSub = 0
 
    # Find the maximum element
    # in hash[] array
    for i in range(K):
        LenSub = max(LenSub, hash[i])
         
    return LenSub   
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 12, 3, 13, 5, 21, 11 ]
    K = 3
    N = len(arr)
     
    print(maxLenSub(arr, N, K))
 
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
class GFG{
 
// Function to find the length
// of subsequence that satisfy
// the given condition
static int maxLenSub(int []arr,
                     int N, int K)
{
  // Store the frequencies
  // of arr[i] % K
  int []hash = new int[K];
 
  // Traverse the given array
  for (int i = 0; i < N; i++)
  {
    // Update frequency of
    // arr[i] % K
    hash[arr[i] % K]++;
  }
 
  // Stores the length of
  // the longest subsequence that
  // satisfy the given condition
  int LenSub = 0;
 
  // Find the maximum element
  // in hash[] array
  for (int i = 0; i < K; i++)
  {
    LenSub = Math.Max(LenSub,
                      hash[i]);
  }
 
  return LenSub;
}
 
// Driver Code
public static void Main(String[] args)
{
  int []arr = {12, 3, 13,
               5, 21, 11};
  int K = 3;
  int N = arr.Length;
  Console.Write(maxLenSub(arr, N, K));
}
}
 
// This code is contributed by Amit Katiyar

chevron_right


Output

3

Time Complexity: O(N)
Auxiliary Space: O(K)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.