Length of longest subarray with increasing contiguous elements

Given an array arr[] of length N, the task is to find the length of the longest subarray which consists of consecutive numbers in increasing order, from the array.

Examples:

Input: arr[] = {2, 3, 4, 6, 7, 8, 9, 10}
Output: 5
Explanation: Subarray {6, 7, 8, 9, 10} is the longest subarray satisfying the given conditions. Therefore, the required output is 5.

Input: arr[] = {4, 5, 1, 2, 3, 4, 9, 10, 11, 12}
Output: 4

Naive Approach: The simplest approach to solve the problem is to traverse the array and for every index i, traverse from over-index and find the length of the longest subarray satisfying the given condition starting from i. Shift i to the index which does not satisfy the condition and check from that index. Finally, print the maximum length of such subarray obtained.



Below is the implementation of the above approach: 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the longest subarray
// with increasing contiguous elements
int maxiConsecutiveSubarray(int arr[], int N)
{
 
    // Stores the length of
    // required longest subarray
    int maxi = 0;
 
    for (int i = 0; i < N - 1; i++) {
 
        // Stores the length of length of longest
        // such subarray from ith index
        int cnt = 1, j;
 
        for (j = i; j < N; j++) {
 
            // If consecutive elements are
            // increasing and differ by 1
            if (arr[j + 1] == arr[j] + 1) {
                cnt++;
            }
 
            // Otherwise
            else {
                break;
            }
        }
 
        // Update the longest subarray
        // obtained so far
        maxi = max(maxi, cnt);
        i = j;
    }
 
    // Return the length obtained
    return maxi;
}
 
// Driver Code
int main()
{
    int N = 11;
    int arr[] = { 1, 3, 4, 2, 3, 4,
                  2, 3, 5, 6, 7 };
 
    cout << maxiConsecutiveSubarray(arr, N);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation for the above approach
import java.util.*;
 
class GFG{
     
// Function to find the longest subarray
// with increasing contiguous elements
public static int maxiConsecutiveSubarray(int arr[],
                                          int N)
{
     
    // Stores the length of
    // required longest subarray
    int maxi = 0;
 
    for(int i = 0; i < N - 1; i++)
    {
         
        // Stores the length of length of
        // longest such subarray from ith
        // index
        int cnt = 1, j;
 
        for(j = i; j < N - 1; j++)
        {
             
            // If consecutive elements are
            // increasing and differ by 1
            if (arr[j + 1] == arr[j] + 1)
            {
                cnt++;
            }
 
            // Otherwise
            else
            {
                break;
            }
        }
 
        // Update the longest subarray
        // obtained so far
        maxi = Math.max(maxi, cnt);
        i = j;
    }
 
    // Return the length obtained
    return maxi;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 11;
    int arr[] = { 1, 3, 4, 2, 3, 4,
                  2, 3, 5, 6, 7 };
 
    System.out.println(maxiConsecutiveSubarray(arr, N));
}
}
 
// This code is contributed by hemanth gadarla
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation for
# the above approach
 
# Function to find the longest
# subarray with increasing
# contiguous elements
def maxiConsecutiveSubarray(arr, N):
   
    # Stores the length of
    # required longest subarray
    maxi = 0;
 
    for i in range(N - 1):
        # Stores the length of
        # length of longest such
        # subarray from ith index
        cnt = 1;
 
        for j in range(i, N - 1):
 
            # If consecutive elements are
            # increasing and differ by 1
            if (arr[j + 1] == arr[j] + 1):
                cnt += 1;
 
            # Otherwise
            else:
                break;
 
        # Update the longest subarray
        # obtained so far
        maxi = max(maxi, cnt);
        i = j;
 
    # Return the length obtained
    return maxi;
 
# Driver Code
if __name__ == '__main__':
   
    N = 11;
    arr = [1, 3, 4, 2, 3,
           4, 2, 3, 5, 6, 7];
 
    print(maxiConsecutiveSubarray(arr, N));
 
# This code is contributed by Rajput-Ji
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation for the
// above approach
using System;
class GFG{
     
// Function to find the longest
// subarray with increasing
// contiguous elements
public static int maxiConsecutiveSubarray(int []arr,
                                          int N)
{   
  // Stores the length of
  // required longest subarray
  int maxi = 0;
 
  for(int i = 0; i < N - 1; i++)
  {
    // Stores the length of
    // length of longest such
    // subarray from ith index
    int cnt = 1, j;
 
    for(j = i; j < N - 1; j++)
    {
      // If consecutive elements are
      // increasing and differ by 1
      if (arr[j + 1] == arr[j] + 1)
      {
        cnt++;
      }
 
      // Otherwise
      else
      {
        break;
      }
    }
 
    // Update the longest subarray
    // obtained so far
    maxi = Math.Max(maxi, cnt);
    i = j;
  }
 
  // Return the length
  // obtained
  return maxi;
}
 
// Driver Code
public static void Main(String []args)
{
  int N = 11;
  int []arr = {1, 3, 4, 2, 3, 4,
               2, 3, 5, 6, 7};
  Console.WriteLine(
          maxiConsecutiveSubarray(arr, N));
}
}
 
// This code is contributed by 29AjayKumar
chevron_right

Output
3

Time Complexity: O(N) 
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :