# Length of longest subarray with increasing contiguous elements

Given an array arr[] of length N, the task is to find the length of the longest subarray which consists of consecutive numbers in increasing order, from the array.

Examples:

Input: arr[] = {2, 3, 4, 6, 7, 8, 9, 10}
Output: 5
Explanation: Subarray {6, 7, 8, 9, 10} is the longest subarray satisfying the given conditions. Therefore, the required output is 5.

Input: arr[] = {4, 5, 1, 2, 3, 4, 9, 10, 11, 12}
Output: 4

Naive Approach: The simplest approach to solve the problem is to traverse the array and for every index i, traverse from over-index and find the length of the longest subarray satisfying the given condition starting from i. Shift i to the index which does not satisfy the condition and check from that index. Finally, print the maximum length of such subarray obtained.

Below is the implementation of the above approach:

 `// C++ implementation for the above approach` `#include ` `using` `namespace` `std;`   `// Function to find the longest subarray` `// with increasing contiguous elements` `int` `maxiConsecutiveSubarray(``int` `arr[], ``int` `N)` `{`   `    ``// Stores the length of` `    ``// required longest subarray` `    ``int` `maxi = 0;`   `    ``for` `(``int` `i = 0; i < N - 1; i++) {`   `        ``// Stores the length of length of longest` `        ``// such subarray from ith index` `        ``int` `cnt = 1, j;`   `        ``for` `(j = i; j < N; j++) {`   `            ``// If consecutive elements are` `            ``// increasing and differ by 1` `            ``if` `(arr[j + 1] == arr[j] + 1) {` `                ``cnt++;` `            ``}`   `            ``// Otherwise` `            ``else` `{` `                ``break``;` `            ``}` `        ``}`   `        ``// Update the longest subarray` `        ``// obtained so far` `        ``maxi = max(maxi, cnt);` `        ``i = j;` `    ``}`   `    ``// Return the length obtained` `    ``return` `maxi;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `N = 11;` `    ``int` `arr[] = { 1, 3, 4, 2, 3, 4,` `                  ``2, 3, 5, 6, 7 };`   `    ``cout << maxiConsecutiveSubarray(arr, N);` `    ``return` `0;` `}`

 `// Java implementation for the above approach` `import` `java.util.*;`   `class` `GFG{` `    `  `// Function to find the longest subarray` `// with increasing contiguous elements` `public` `static` `int` `maxiConsecutiveSubarray(``int` `arr[],` `                                          ``int` `N)` `{` `    `  `    ``// Stores the length of` `    ``// required longest subarray` `    ``int` `maxi = ``0``;`   `    ``for``(``int` `i = ``0``; i < N - ``1``; i++) ` `    ``{` `        `  `        ``// Stores the length of length of` `        ``// longest such subarray from ith` `        ``// index` `        ``int` `cnt = ``1``, j;`   `        ``for``(j = i; j < N - ``1``; j++)` `        ``{` `            `  `            ``// If consecutive elements are` `            ``// increasing and differ by 1` `            ``if` `(arr[j + ``1``] == arr[j] + ``1``) ` `            ``{` `                ``cnt++;` `            ``}`   `            ``// Otherwise` `            ``else` `            ``{` `                ``break``;` `            ``}` `        ``}`   `        ``// Update the longest subarray` `        ``// obtained so far` `        ``maxi = Math.max(maxi, cnt);` `        ``i = j;` `    ``}`   `    ``// Return the length obtained` `    ``return` `maxi;` `}`   `// Driver Code` `public` `static` `void` `main(String args[])` `{` `    ``int` `N = ``11``;` `    ``int` `arr[] = { ``1``, ``3``, ``4``, ``2``, ``3``, ``4``,` `                  ``2``, ``3``, ``5``, ``6``, ``7` `};`   `    ``System.out.println(maxiConsecutiveSubarray(arr, N));` `}` `}`   `// This code is contributed by hemanth gadarla`

 `# Python3 implementation for ` `# the above approach`   `# Function to find the longest ` `# subarray with increasing ` `# contiguous elements` `def` `maxiConsecutiveSubarray(arr, N):` `  `  `    ``# Stores the length of` `    ``# required longest subarray` `    ``maxi ``=` `0``;`   `    ``for` `i ``in` `range``(N ``-` `1``):` `        ``# Stores the length of ` `        ``# length of longest such ` `        ``# subarray from ith index` `        ``cnt ``=` `1``;`   `        ``for` `j ``in` `range``(i, N ``-` `1``):`   `            ``# If consecutive elements are` `            ``# increasing and differ by 1` `            ``if` `(arr[j ``+` `1``] ``=``=` `arr[j] ``+` `1``):` `                ``cnt ``+``=` `1``;`   `            ``# Otherwise` `            ``else``:` `                ``break``;`   `        ``# Update the longest subarray` `        ``# obtained so far` `        ``maxi ``=` `max``(maxi, cnt);` `        ``i ``=` `j;`   `    ``# Return the length obtained` `    ``return` `maxi;`   `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `  `  `    ``N ``=` `11``;` `    ``arr ``=` `[``1``, ``3``, ``4``, ``2``, ``3``, ` `           ``4``, ``2``, ``3``, ``5``, ``6``, ``7``];`   `    ``print``(maxiConsecutiveSubarray(arr, N));`   `# This code is contributed by Rajput-Ji`

 `// C# implementation for the` `// above approach` `using` `System;` `class` `GFG{` `    `  `// Function to find the longest ` `// subarray with increasing ` `// contiguous elements` `public` `static` `int` `maxiConsecutiveSubarray(``int` `[]arr,` `                                          ``int` `N)` `{    ` `  ``// Stores the length of` `  ``// required longest subarray` `  ``int` `maxi = 0;`   `  ``for``(``int` `i = 0; i < N - 1; i++) ` `  ``{` `    ``// Stores the length of ` `    ``// length of longest such ` `    ``// subarray from ith index` `    ``int` `cnt = 1, j;`   `    ``for``(j = i; j < N - 1; j++)` `    ``{` `      ``// If consecutive elements are` `      ``// increasing and differ by 1` `      ``if` `(arr[j + 1] == arr[j] + 1) ` `      ``{` `        ``cnt++;` `      ``}`   `      ``// Otherwise` `      ``else` `      ``{` `        ``break``;` `      ``}` `    ``}`   `    ``// Update the longest subarray` `    ``// obtained so far` `    ``maxi = Math.Max(maxi, cnt);` `    ``i = j;` `  ``}`   `  ``// Return the length ` `  ``// obtained` `  ``return` `maxi;` `}`   `// Driver Code` `public` `static` `void` `Main(String []args)` `{` `  ``int` `N = 11;` `  ``int` `[]arr = {1, 3, 4, 2, 3, 4,` `               ``2, 3, 5, 6, 7};` `  ``Console.WriteLine(` `          ``maxiConsecutiveSubarray(arr, N));` `}` `}`   `// This code is contributed by 29AjayKumar`

Output
`3`

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :