Length of longest subarray consisting only of 1s
Given an array arr[] of size N, consisting of binary values, the task is to find the longest non-empty subarray consisting only of 1s after removal of a single array element.
Examples:
Input: arr[] = {1, 1, 1}
Output: 2Input: arr[] = {0, 0, 0}
Output: 0
Approach: Follow the steps below to solve the problem:
- Initialize three variables, newLen = 0, prevLen = 0, maxLen = 0.
- Traverse the array arr[] by appending zero at the beginning:
- If arr[i] = 1: Increment both newLen & prevLen by 1.
- Otherwise:
- Assign the maximum value to the variable maxLen.
- Set prevLen = newLen and newLen = 0.
- Print maxLen if maxLen < len(arr).
- Otherwise, print maxLen – 1.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Utility function to find the length of // longest subarray containing only 1s int longestSubarrayUtil(vector< int > arr, int n) { int neww = 0, old = 0, m = 0; // Traverse the array for ( int x = 0; x <= n; x++) { // If array element is 1 if (arr[x] == 1) { // Increment both by 1 neww += 1; old += 1; } else { // Assign maximum value m = max(m, old); //Assign new to old // and set new to zero old = neww; neww = 0; } } // Return the final length if (m < n) { return m; } else return m - 1; } // Function to find length of the // longest subarray containing only 1's void longestSubarray(vector< int > arr, int n) { // Stores the length of longest // subarray consisting of 1s int len = longestSubarrayUtil(arr, n); // Print the length // of the subarray cout << len; } // Driver code int main() { // Given array vector< int > arr = {1, 1, 1}; int n = arr.size(); // Append 0 at beginning for ( int i = n; i >= 0; i--) { arr[i] = arr[i - 1]; } arr[0] = 0; // Function call to find the longest // subarray containing only 1's longestSubarray(arr, n); } // This code is contributed by SoumikMondal |
Java
// Java program for the above approach import java.util.*; class GFG { // Utility function to find the length of // longest subarray containing only 1s static int longestSubarrayUtil( int [] arr, int n) { int neww = 0 , old = 0 , m = 0 ; // Traverse the array for ( int x = 0 ; x <n; x++) { // If array element is 1 if (arr[x] == 1 ) { // Increment both by 1 neww += 1 ; old += 1 ; } else { // Assign maximum value m = Math.max(m, old); //Assign new to old // and set new to zero old = neww; neww = 0 ; } } m = Math.max(m, old); // Return the final length if (m<n) return m; else return m- 1 ; } // Function to find length of the // longest subarray containing only 1's static void longestSubarray( int []arr, int n) { // Stores the length of longest // subarray consisting of 1s int len = longestSubarrayUtil(arr, n); // Print the length // of the subarray System.out.print(len); } // Driver code public static void main(String[] args) { // Given array int arr[] = { 1 , 1 , 1 }; int n = arr.length; // Function call to find the longest // subarray containing only 1's longestSubarray(arr, n); } } // This code is contributed by amreshkumar3. |
C#
using System; public class GFG { // Function to find length of the // longest subarray containing only 1's static void longestSubarray( int [] arr, int n) { // Stores the length of longest // subarray consisting of 1s int len = longestSubarrayUtil(arr, n); // Print the length // of the subarray Console.WriteLine(len); } // Utility function to find the length of // longest subarray containing only 1s static int longestSubarrayUtil( int [] arr, int n) { int neww = 0, old = 0, m = 0; // Traverse the array for ( int x = 0; x < n; x++) { // If array element is 1 if (arr[x] == 1) { // Increment both by 1 neww += 1; old += 1; } else { // Assign maximum value m = Math.Max(m, old); // Assign new to old // and set new to zero old = neww; neww = 0; } } m = Math.Max(m, old); // Return the final length if (m < n) return m; else return m - 1; } static public void Main() { // Code // Given array int [] arr = { 1, 1, 1 }; int n = arr.Length; // Function call to find the longest // subarray containing only 1's longestSubarray(arr, n); } } // this code is contributed by devendra solunke |
Python3
# Python3 program for the above approach # Utility function to find the length of # longest subarray containing only 1s def longestSubarrayUtil(arr): new, old, m = 0 , 0 , 0 # Traverse the array for x in arr + [ 0 ]: # If array element is 1 if x = = 1 : # Increment both by 1 new + = 1 old + = 1 else : # Assign maximum value m = max (m, old) # Assign new to old # and set new to zero old, new = new, 0 # Return the final length return m if m < len (arr) else m - 1 # Function to find length of the # longest subarray containing only 1's def longestSubarray(arr): # Stores the length of longest # subarray consisting of 1s len = longestSubarrayUtil(arr) # Print the length # of the subarray print ( len ) # Given array arr = [ 1 , 1 , 1 ] # Function call to find the longest # subarray containing only 1's longestSubarray(arr) |
Javascript
<script> // JavaScript program for the above approach // Utility function to find the length of // longest subarray containing only 1s function longestSubarrayUtil(arr, n) { var neww = 0, old = 0, m = 0; // Traverse the array for ( var x = 0; x <= n; x++) { // If array element is 1 if (arr[x] == 1) { // Increment both by 1 neww += 1; old += 1; } else { // Assign maximum value m = Math.max(m, old); //Assign new to old // and set new to zero old = neww; neww = 0; } } // Return the final length if (m < n) { return m; } else { return m - 1; } } // Function to find length of the // longest subarray containing only 1's function longestSubarray(arr, n) { // Stores the length of longest // subarray consisting of 1s var len = longestSubarrayUtil(arr, n); // Print the length // of the subarray document.write( len); } // Driver code // Given array var arr = [1, 1, 1]; var n = arr.length; // Append 0 at beginning for ( var i = n-1; i >= 0; i--) { arr[i] = arr[i - 1]; } arr[0] = 0; // Function call to find the longest // subarray containing only 1's longestSubarray(arr, n); </script> |
Output:
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...