Length of longest straight path from a given Binary Tree

Given a Binary Tree, the task is to find the length of the longest straight path of the given binary tree.

Straight Path is defined as the path that starts from any node and ends at another node in the tree such that the direction of traversal from the source node to the destination node always remains the same i.e., either left or right, without any change in direction that is left->left ->left or right->right->right direction. 

Examples:

Input:



Output: 2
Explanation:
The path shown in green is the longest straight path from 4 to 6 which is of length 2. 
 

Input:

Output: 3
Explanation:
The path shown in green is the longest straight path from 5 to 0 which is of length 3. 
 

Approach: The idea is to use the Postorder traversal. Follow the steps below to solve the problem:

  1. For each node, check the direction of the current Node (either left or right) and check which direction of its child is providing the longest length below it to that node.
  2. If the direction of the current node and the child giving the longest length is not the same then save the result of that child and pass the length of the other child to its parent.
  3. Using the above steps find the longest straight path at each node and save the result to print the maximum value among all the straight paths.
  4. Print the maximum path after the above steps.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a Tree node
struct Node {
    int key;
    struct Node *left, *right;
};
 
// Function to create a new node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    temp->left = temp->right = NULL;
    return (temp);
}
 
// Function to find the longest
// straight path in a tree
int findPath(Node* root, char name,
             int& max_v)
{
    // Base Case
    if (root == NULL) {
        return 0;
    }
 
    // Recursive call on left child
    int left = findPath(root->left,
                        'l', max_v);
 
    // Recursive call on right child
    int right = findPath(root->right,
                         'r', max_v);
 
    // Return the maximum straight
    // path possible from current node
    if (name == 't') {
        return max(left, right);
    }
 
    // Leaf node
    if (left == 0 && right == 0) {
        return 1;
    }
 
    // Executes when either of the
    // child is present or both
    else {
 
        // Pass the longest value from
        // either direction
        if (left < right) {
            if (name == 'r')
                return 1 + right;
 
            else {
                max_v = max(max_v, right);
                return 1 + left;
            }
        }
        else {
            if (name == 'l')
                return 1 + left;
 
            else {
                max_v = max(max_v, left);
                return 1 + right;
            }
        }
    }
    return 0;
}
 
// Driver Code
int main()
{
 
    // Given Tree
    Node* root = newNode(3);
 
    root->left = newNode(3);
    root->right = newNode(3);
 
    root->left->right = newNode(2);
    root->right->left = newNode(4);
    root->right->left->left = newNode(4);
 
    int max_v = max(
        findPath(root, 't', max_v),
        max_v);
 
    // Print the maximum length
    cout << max_v << "\n";
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
 
class GFG{
     
static int max_v;
 
// Structure of a Tree node
static class Node
{
    int key;
    Node left, right;
};
 
// Function to create a new node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to find the longest
// straight path in a tree
static int findPath(Node root, char name)
{
     
    // Base Case
    if (root == null)
    {
        return 0;
    }
 
    // Recursive call on left child
    int left = findPath(root.left, 'l');
 
    // Recursive call on right child
    int right = findPath(root.right, 'r');
 
    // Return the maximum straight
    // path possible from current node
    if (name == 't')
    {
        return Math.max(left, right);
    }
 
    // Leaf node
    if (left == 0 && right == 0)
    {
        return 1;
    }
 
    // Executes when either of the
    // child is present or both
    else
    {
         
        // Pass the longest value from
        // either direction
        if (left < right)
        {
            if (name == 'r')
                return 1 + right;
            else
            {
                max_v = Math.max(max_v, right);
                return 1 + left;
            }
        }
        else
        {
            if (name == 'l')
                return 1 + left;
            else
            {
                max_v = Math.max(max_v, left);
                return 1 + right;
            }
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given Tree
    Node root = newNode(3);
 
    root.left = newNode(3);
    root.right = newNode(3);
    root.left.right = newNode(2);
    root.right.left = newNode(4);
    root.right.left.left = newNode(4);
 
    max_v = Math.max(findPath(root, 't'),
                     max_v);
 
    // Print the maximum length
    System.out.print(max_v+ "\n");
}
}
 
// This code is contributed by Amit Katiyar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for
// the above approach
using System;
class GFG{
     
static int max_v;
 
// Structure of a Tree node
public class Node
{
  public int key;
  public Node left, right;
};
 
// Function to create a new node
static Node newNode(int key)
{
  Node temp = new Node();
  temp.key = key;
  temp.left = temp.right = null;
  return (temp);
}
 
// Function to find the longest
// straight path in a tree
static int findPath(Node root,
                    char name)
{
  // Base Case
  if (root == null)
  {
    return 0;
  }
 
  // Recursive call on left child
  int left = findPath(root.left, 'l');
 
  // Recursive call on right child
  int right = findPath(root.right, 'r');
 
  // Return the maximum straight
  // path possible from current node
  if (name == 't')
  {
    return Math.Max(left, right);
  }
 
  // Leaf node
  if (left == 0 && right == 0)
  {
    return 1;
  }
 
  // Executes when either of the
  // child is present or both
  else
  {
    // Pass the longest value from
    // either direction
    if (left < right)
    {
      if (name == 'r')
        return 1 + right;
      else
      {
        max_v = Math.Max(max_v, right);
        return 1 + left;
      }
    }
    else
    {
      if (name == 'l')
        return 1 + left;
      else
      {
        max_v = Math.Max(max_v, left);
        return 1 + right;
      }
    }
  }
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given Tree
  Node root = newNode(3);
 
  root.left = newNode(3);
  root.right = newNode(3);
  root.left.right = newNode(2);
  root.right.left = newNode(4);
  root.right.left.left = newNode(4);
 
  max_v = Math.Max(findPath(root, 't'), max_v);
 
  // Print the maximum length
  Console.Write(max_v + "\n");
}
}
 
// This code is contributed by 29AjayKumar

chevron_right


Output: 

2





Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.