Skip to content
Related Articles

Related Articles

Improve Article

Length of longest Powerful number subsequence in an Array

  • Last Updated : 16 Apr, 2021

Given an array arr[] containing non-negative integers of length N, the task is to print the length of the longest subsequence of Powerful numbers in the array.
 

A number n is said to be Powerful Number if, for every prime factor p of it, p2 also divides it.

Examples: 
 

Input: arr[] = { 3, 4, 11, 2, 9, 21 } 
Output:
Explanation: 
Longest Powerful number Subsequence is {4, 9} and hence the answer is 2.
Input: arr[] = { 6, 4, 10, 13, 9, 25 } 
Output:
Explanation: 
Longest Powerful number Subsequence is {4, 9, 25} and hence the answer is 3.

Approach: To solve the problem mentioned above, we have to follow the steps given below: 
 



  • Traverse the given array and for each element in the array, check if it is Powerful number or not.
  • If the element is a Powerful number, it will be in Longest Powerful number Subsequence.
  • Hence increment the required length of Longest Powerful number Subsequence by 1
  • Return the final length after reaching the size of the array.

Below is the implementation of the above approach:
 

C++




// C++ program to find the length of
// Longest Powerful Subsequence in an Array
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the number is powerful
bool isPowerful(int n)
{
    // First divide the number repeatedly by 2
    while (n % 2 == 0) {
        int power = 0;
        while (n % 2 == 0) {
            n /= 2;
            power++;
        }
 
        // Check if only 2^1 divides n,
        // then return false
        if (power == 1)
            return false;
    }
 
    // Check if n is not a power of 2
    // then this loop will execute
    // repeat above process
    for (int factor = 3;
         factor <= sqrt(n);
         factor += 2) {
 
        // Find highest power of "factor"
        // that divides n
        int power = 0;
        while (n % factor == 0) {
            n = n / factor;
            power++;
        }
 
        // If only factor^1 divides n,
        // then return false
        if (power == 1)
            return false;
    }
 
    // n must be 1 now
    // if it is not a prime number.
    // Since prime numbers
    // are not powerful, we return
    // false if n is not 1.
    return (n == 1);
}
 
// Function to find the longest subsequence
// which contain all powerful numbers
int longestPowerfulSubsequence(
    int arr[], int n)
{
    int answer = 0;
 
    for (int i = 0; i < n; i++) {
        if (isPowerful(arr[i]))
            answer++;
    }
 
    return answer;
}
 
// Driver code
int main()
{
    int arr[] = { 6, 4, 10, 13, 9, 25 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << longestPowerfulSubsequence(arr, n)
         << endl;
 
    return 0;
}

Java




// Java program to find the length of
// Longest Powerful Subsequence in an Array
class GFG{
 
// Function to check if the number is powerful
static boolean isPowerful(int n)
{
 
    // First divide the number repeatedly by 2
    while (n % 2 == 0)
    {
        int power = 0;
        while (n % 2 == 0)
        {
            n /= 2;
            power++;
        }
 
        // Check if only 2^1 divides n,
        // then return false
        if (power == 1)
            return false;
    }
 
    // Check if n is not a power of 2
    // then this loop will execute
    // repeat above process
    for(int factor = 3;
            factor <= Math.sqrt(n);
            factor += 2)
    {
 
       // Find highest power of "factor"
       // that divides n
       int power = 0;
       while (n % factor == 0)
       {
           n = n / factor;
           power++;
       }
        
       // If only factor^1 divides n,
       // then return false
       if (power == 1)
       return false;
         
    }
 
    // n must be 1 now
    // if it is not a prime number.
    // Since prime numbers
    // are not powerful, we return
    // false if n is not 1.
    return (n == 1);
}
 
// Function to find the longest subsequence
// which contain all powerful numbers
static int longestPowerfulSubsequence(int arr[],
                                      int n)
{
    int answer = 0;
 
    for(int i = 0; i < n; i++)
    {
       if (isPowerful(arr[i]))
       answer++;
    }
     
    return answer;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 6, 4, 10, 13, 9, 25 };
    int n = arr.length;
 
    System.out.print(longestPowerfulSubsequence(arr,
                                                n) + "\n");
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to find the length of
# Longest Powerful Subsequence in an Array
import math
 
# Function to check if the number is powerful
def isPowerful(n):
 
    # First divide the number repeatedly by 2
    while (n % 2 == 0):
        power = 0
         
        while (n % 2 == 0):
            n //= 2
            power += 1
         
        # Check if only 2^1 divides n,
        # then return false
        if (power == 1):
            return False
     
    # Check if n is not a power of 2
    # then this loop will execute
    # repeat above process
    for factor in range(3, int(math.sqrt(n)) + 1, 2):
 
        # Find highest power of "factor"
        # that divides n
        power = 0
        while (n % factor == 0):
            n = n // factor
            power += 1
         
        # If only factor^1 divides n,
        # then return false
        if (power == 1):
            return False
     
    # n must be 1 now
    # if it is not a prime number.
    # Since prime numbers
    # are not powerful, we return
    # false if n is not 1.
    return (n == 1)
 
# Function to find the longest subsequence
# which contain all powerful numbers
def longestPowerfulSubsequence(arr, n):
     
    answer = 0
 
    for i in range(n):
        if (isPowerful(arr[i])):
            answer += 1
     
    return answer
 
# Driver code
arr = [ 6, 4, 10, 13, 9, 25 ]
 
n = len(arr)
 
print(longestPowerfulSubsequence(arr, n))
 
# This code is contributed by sanjoy_62

C#




// C# program to find the length of
// longest Powerful Subsequence in
// an array
using System;
class GFG{
 
// Function to check if the
// number is powerful
static bool isPowerful(int n)
{
 
    // First divide the number
    // repeatedly by 2
    while (n % 2 == 0)
    {
        int power = 0;
        while (n % 2 == 0)
        {
            n /= 2;
            power++;
        }
 
        // Check if only 2^1 divides
        // n, then return false
        if (power == 1)
            return false;
    }
 
    // Check if n is not a power of 2
    // then this loop will execute
    // repeat above process
    for(int factor = 3;
            factor <= Math.Sqrt(n);
            factor += 2)
    {
        
       // Find highest power of "factor"
       // that divides n
       int power = 0;
       while (n % factor == 0)
       {
           n = n / factor;
           power++;
       }
        
       // If only factor^1 divides n,
       // then return false
       if (power == 1)
           return false;
    }
     
    // n must be 1 now
    // if it is not a prime number.
    // Since prime numbers
    // are not powerful, we return
    // false if n is not 1.
    return (n == 1);
}
 
// Function to find the longest subsequence
// which contain all powerful numbers
static int longestPowerfulSubsequence(int []arr,
                                      int n)
{
    int answer = 0;
 
    for(int i = 0; i < n; i++)
    {
       if (isPowerful(arr[i]))
           answer++;
    }
    return answer;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 6, 4, 10, 13, 9, 25 };
    int n = arr.Length;
 
    Console.Write(longestPowerfulSubsequence(arr,
                                             n) + "\n");
}
}
 
// This code is contributed by gauravrajput1

Javascript




<script>
     
// Javascript program to find the length of
// Longest Powerful Subsequence in an Array
 
// Function to check if the number is powerful
function isPowerful(n)
{
   
    // First divide the number repeatedly by 2
    while (n % 2 == 0)
    {
        let power = 0;
        while (n % 2 == 0)
        {
            n /= 2;
            power++;
        }
   
        // Check if only 2^1 divides n,
        // then return false
        if (power == 1)
            return false;
    }
   
    // Check if n is not a power of 2
    // then this loop will execute
    // repeat above process
    for(let factor = 3;
            factor <= Math.sqrt(n);
            factor += 2)
    {
   
       // Find highest power of "factor"
       // that divides n
       let power = 0;
       while (n % factor == 0)
       {
           n = n / factor;
           power++;
       }
          
       // If only factor^1 divides n,
       // then return false
       if (power == 1)
       return false;
           
    }
   
    // n must be 1 now
    // if it is not a prime number.
    // Since prime numbers
    // are not powerful, we return
    // false if n is not 1.
    return (n == 1);
}
   
// Function to find the longest subsequence
// which contain all powerful numbers
function longestPowerfulSubsequence(arr,
                                      n)
{
    let answer = 0;
   
    for(let i = 0; i < n; i++)
    {
       if (isPowerful(arr[i]))
       answer++;
    }
       
    return answer;
}
     
// Driver code
    let arr = [ 6, 4, 10, 13, 9, 25 ];
    let n = arr.length;
    document.write(longestPowerfulSubsequence(arr,
                                                n) + "\n");
 
// This code is contributed by souravghosh0416.
</script>
Output: 
3

 

Time Complexity: O(N*√N)
Auxiliary Space Complexity: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :