Length of Longest Perfect number Subsequence in an Array


Given an array arr[] containing non-negative integers of length N, the task is to print the length of the longest subsequence of Perfect numbers in the array.

A number is a perfect number if it is equal to the sum of its proper divisors, that is, sum of its positive divisors excluding the number itself.

Examples:



Input: arr[] = { 3, 6, 11, 2, 28, 21, 8128 }
Output: 3
Explanation:
Longest Perfect number subsequence is {6, 28, 8128} and hence the answer is 3.

Input:arr[] = { 6, 4, 10, 13, 9, 25 }
Output: 1
Explanation:
Longest Perfect number subsequence is {6} and hence the answer is 1.

Approach:

To solve the problem mentioned above follow the steps given below:

  • Traverse the given array and for each element in the array, check if it is a perfect number or not.
  • If the element is a perfect number, it will be in the Longest Perfect number Subsequence. Hence increment the required length of Longest Perfect number Subsequence by 1

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the length of
// Longest Perfect number Subsequence in an Array
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if
// the number is a Perfect number
bool isPerfect(long long int n)
{
    // To store sum of divisors
    long long int sum = 1;
  
    // Find all divisors and add them
    for (long long int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            if (i * i != n)
                sum = sum + i + n / i;
            else
                sum = sum + i;
        }
    }
    // Check if sum of divisors is equal to
    // n, then n is a perfect number
    if (sum == n && n != 1)
        return true;
  
    return false;
}
  
// Function to find the longest subsequence
// which contain all Perfect numbers
int longestPerfectSubsequence(int arr[], int n)
{
    int answer = 0;
  
    // Find the length of longest
    // Perfect number subsequence
    for (int i = 0; i < n; i++) {
        if (isPerfect(arr[i]))
            answer++;
    }
  
    return answer;
}
  
// Driver code
int main()
{
    int arr[] = { 3, 6, 11, 2, 28, 21, 8128 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << longestPerfectSubsequence(arr, n) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the length of 
// longest perfect number subsequence
// in an array 
class GFG {
      
// Function to check if the
// number is a perfect number 
static boolean isPerfect(long n) 
      
    // To store sum of divisors 
    long sum = 1
      
    // Find all divisors and add them 
    for(long i = 2; i * i <= n; i++)
    
       if (n % i == 0)
       
           if (i * i != n) 
               sum = sum + i + n / i; 
           else
               sum = sum + i; 
       
    
      
    // Check if sum of divisors is equal  
    // to n, then n is a perfect number 
    if (sum == n && n != 1)
    {
        return true;
    
    return false
      
// Function to find the longest subsequence 
// which contain all Perfect numbers 
static int longestPerfectSubsequence(int arr[], 
                                     int n) 
    int answer = 0
      
    // Find the length of longest 
    // perfect number subsequence 
    for(int i = 0; i < n; i++)
    
       if (isPerfect(arr[i]) == true
           answer++; 
    
    return answer; 
      
// Driver code 
public static void main (String[] args)
    int arr[] = { 3, 6, 11, 2, 28, 21, 8128 }; 
    int n = arr.length; 
      
    System.out.println(longestPerfectSubsequence(arr, n)); 
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the length of
# Longest Perfect number Subsequence in an Array
  
  
# Function to check if 
# the number is Perfect number
def isPerfect( n ): 
      
    # To store sum of divisors 
    sum = 1
      
    # Find all divisors and add them 
    i = 2
    while i * i <= n: 
        if n % i == 0
            sum = sum + i + n /
        i += 1
      
    # Check if sum of divisors is equal to 
    # n, then n is a perfect number 
      
    return (True if sum == n and n != 1 else False
  
# Function to find the longest subsequence
# which contain all Perfect numbers
def longestPerfectSubsequence( arr, n): 
      
    answer = 0
      
    # Find the length of longest 
    # Perfect number subsequence 
    for i in range (n): 
        if (isPerfect(arr[i])): 
            answer += 1
      
    return answer
  
# Driver code 
if __name__ == "__main__"
    arr = [ 3, 6, 11, 2, 28, 21, 8128
    n = len(arr) 
      
    print (longestPerfectSubsequence(arr, n)) 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the length of 
// longest perfect number subsequence
// in an array
using System;
  
class GFG {
      
// Function to check if the
// number is a perfect number 
static bool isPerfect(long n) 
          
    // To store sum of divisors 
    long sum = 1; 
          
    // Find all divisors and add them 
    for(long i = 2; i * i <= n; i++)
    
       if (n % i == 0)
       
           if (i * i != n) 
               sum = sum + i + n / i; 
           else
               sum = sum + i; 
       
    
      
    // Check if sum of divisors is equal 
    // to n, then n is a perfect number 
    if (sum == n && n != 1)
    {
        return true;
    
    return false;
          
// Function to find the longest subsequence 
// which contain all perfect numbers 
static int longestPerfectSubsequence(int []arr, 
                                     int n) 
    int answer = 0; 
          
    // Find the length of longest 
    // perfect number subsequence 
    for(int i = 0; i < n; i++)
    
       if (isPerfect(arr[i]) == true
           answer++; 
    
    return answer; 
          
// Driver code 
public static void Main (string[] args)
    int []arr = { 3, 6, 11, 2, 28, 21, 8128 }; 
    int n = arr.Length; 
          
    Console.WriteLine(longestPerfectSubsequence(arr, n)); 
}
  
// This code is contributed by AnkitRai01

chevron_right


Output:

3

Time Complexity: O(N×√N)

Auxiliary Space Complexity: O(1)

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01