Length of largest subarray whose all elements are Perfect Number

Given an array arr[] of integer elements, the task is to find the length of the largest sub-array of arr[] such that all the elements of the sub-array are Perfect number.

A perfect number is a positive integer that is equal to the sum of its proper divisors.

Examples:

Input: arr[] = {1, 7, 36, 4, 6, 28, 4}
Output: 2
Explanation:
Maximum length sub-array with all elements as perfect number is {6, 28}.

Input: arr[] = {25, 100, 2, 3, 9, 1}
Output: 0
Explanation:
None of the number is a perfect number



Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the length of the
// largest sub-array of an array every
// element of whose is a perfect number
  
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns true if n is perfect
bool isPerfect(long long int n)
{
    // Variable to store sum of divisors
    long long int sum = 1;
  
    // Find all divisors and add them
    for (long long int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            if (i * i != n)
                sum = sum + i + n / i;
            else
                sum = sum + i;
        }
    }
    // Check if sum of divisors is equal to
    // n, then n is a perfect number
    if (sum == n && n != 1)
        return true;
  
    return false;
}
  
// Function to return the length of the
// largest sub-array of an array every
// element of whose is a perfect number
int contiguousPerfectNumber(int arr[], int n)
{
  
    int current_length = 0;
    int max_length = 0;
  
    for (int i = 0; i < n; i++) {
  
        // Check if arr[i] is a perfect number
        if (isPerfect(arr[i]))
            current_length++;
        else
            current_length = 0;
  
        max_length = max(max_length,
                         current_length);
    }
  
    return max_length;
}
  
// Driver code
int main()
{
    int arr[] = { 1, 7, 36, 4, 6, 28, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << contiguousPerfectNumber(arr, n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the length of the
// largest sub-array of an array every
// element of whose is a perfect number
  
import java.util.*;     
  
class GFG
{
    // Function that returns true if n is perfect
    static boolean isPerfect(int n)
    {
        // Variable to store sum of divisors
        int sum = 1;
        int i;
          
        // Find all divisors and add them
        for ( i = 2; i * i <= n; i++) {
            if (n % i == 0) {
                if (i * i != n)
                    sum = sum + i + n / i;
                else
                    sum = sum + i;
            }
        }
          
        // Check if sum of divisors is equal to
        // n, then n is a perfect number
        if (sum == n && n != 1)
            return true;
      
        return false;
    }
      
    // Function to return the length of the
    // largest sub-array of an array every
    // element of whose is a perfect number
    static int contiguousPerfectNumber(int arr[], int n)
    {
      
        int current_length = 0;
        int max_length = 0;
        int i;
        for (i = 0; i < n; i++) {
      
            // Check if arr[i] is a perfect number
            if (isPerfect(arr[i]))
                current_length++;
            else
                current_length = 0;
      
            max_length = Math.max(max_length,
                            current_length);
        }
      
        return max_length;
    }
      
    // Driver code
    public static void main(String []args)
    {
        int arr[] = { 1, 7, 36, 4, 6, 28, 4 };
        int n = arr.length;
      
        System.out.print(contiguousPerfectNumber(arr, n));
      
    }
  
//This code is contributed by chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find the length of 
# the largest sub-array of an array every 
# element of whose is a perfect number 
  
  
# Function that returns true if n is perfect 
def isPerfect( n ): 
      
    # To store sum of divisors 
    sum = 1
      
    # Find all divisors and add them 
    i = 2
    while i * i <= n: 
        if n % i == 0
            sum = sum + i + n /
        i += 1
      
    # check if the sum of divisors is equal to 
    # n, then n is a perfect number 
      
    return (True if sum == n and n != 1 else False
  
  
# Function to return the length of the 
# largest sub-array of an array every 
# element of whose is a perfect number
def contiguousPerfectNumber(arr, n): 
    current_length = 0
    max_length = 0
  
    for i in range(0, n, 1): 
          
        # check if arr[i] is a perfect number
        if (isPerfect(arr[i])): 
            current_length += 1
        else
            current_length = 0
  
        max_length = max(max_length, 
                        current_length) 
      
    return max_length 
  
# Driver code 
if __name__ == '__main__'
    arr = [1, 7, 36, 4, 6, 28, 4]
    n = len(arr) 
  
    print(contiguousPerfectNumber(arr, n)) 
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the length of the
// largest sub-array of an array every
// element of whose is a perfect number
using System;
  
class GFG{
      
// Function that returns true if n is perfect
static bool isPerfect(int n)
{
      
    // Variable to store sum of divisors
    int sum = 1;
    int i;
          
    // Find all divisors and add them
    for(i = 2; i * i <= n; i++)
    {
       if (n % i == 0)
       {
           if (i * i != n)
               sum = sum + i + n / i;
           else
               sum = sum + i;
       }
    }
          
    // Check if sum of divisors is equal to
    // n, then n is a perfect number
    if (sum == n && n != 1)
    {
        return true;
    }
    return false;
}
      
// Function to return the length of the
// largest sub-array of an array every
// element of whose is a perfect number
static int contiguousPerfectNumber(int []arr,
                                   int n)
{
    int current_length = 0;
    int max_length = 0;
    int i;
    for(i = 0; i < n; i++)
    {
         
       // Check if arr[i] is a perfect number
       if (isPerfect(arr[i]))
       {
           current_length++;
       }
       else
       {
           current_length = 0;
       }
       max_length = Math.Max(max_length,
                             current_length);
    }
    return max_length;
}
      
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 7, 36, 4, 6, 28, 4 };
    int n = arr.Length;
      
    Console.Write(contiguousPerfectNumber(arr, n));
}
}
  
// This code is contributed by sapnasingh4991
chevron_right

Output:
2

Time Complexity: O(N×√N)

Auxiliary Space Complexity: O(1)





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : chitranayal, sapnasingh4991

Article Tags :
Practice Tags :