Length of Diagonals of a Cyclic Quadrilateral using the length of Sides.

Given integers A, B, C, and D, denoting the length of sides of a Cyclic Quadrilateral, the task is to find the length of diagonals of a cyclic quadrilateral.

Examples:

Input: A = 10, B = 15, C = 20, D = 25 
Output: 22.06 26.07
Input: A = 10, B = 30, C =50, D = 20 
Output: 37.93 29.0 
 

Approach: The length of diagonals can be calculated using the following equations:  

[Tex]Diagonal (q)=\sqrt{\frac{(ac+bd)(ab+cd)}{ad+bc}}         [/Tex]



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calcualte the length of
// diagonals of a cyclic quadrilateral
vector<float> Diagonals(int a, int b,
                        int c, int d)
{
    vector<float> ans;
    ans.push_back(sqrt(((a * c) + (b * d)) *
                       ((a * d) + (b * c)) /
                       ((a * b) + (c * d))));
    ans.push_back(sqrt(((a * c) + (b * d)) *
                       ((a * b) + (c * d)) /
                       ((a * d) + (b * c))));
    return ans;
}
 
// Driver Code
int main()
{
    int A = 10;
    int B = 15;
    int C = 20;
    int D = 25;
 
    // Function Call
    vector<float> ans = Diagonals(A, B, C, D);
 
    // Print the final answer
    printf("%.2f %.2f",
           (ans[0]) + .01,
            ans[1] + .01);
}
 
// This code is contributed by Amit Katiyar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to calcualte the length of
// diagonals of a cyclic quadrilateral
static Vector<Float> Diagonals(int a, int b,
                               int c, int d)
{
    Vector<Float> ans = new Vector<Float>();
    ans.add((float) Math.sqrt(((a * c) + (b * d)) *
                              ((a * d) + (b * c)) /
                              ((a * b) + (c * d))));
    ans.add((float) Math.sqrt(((a * c) + (b * d)) *
                              ((a * b) + (c * d)) /
                              ((a * d) + (b * c))));
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int A = 10;
    int B = 15;
    int C = 20;
    int D = 25;
 
    // Function Call
    Vector<Float> ans = Diagonals(A, B,
                                  C, D);
 
    // Print the final answer
    System.out.printf("%.2f %.2f",
                      (ans.get(0)) + .01,
                       ans.get(1) + .01);
}
}
 
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
 
import math
 
# Function to calcualte the length of
# diagonals of a cyclic quadrilateral
def Diagonals(a, b, c, d):
 
    p = math.sqrt(((a * c)+(b * d))*((a * d)+(b * c))
                  / ((a * b)+(c * d)))
    q = math.sqrt(((a * c)+(b * d))*((a * b)+(c * d))
                  / ((a * d)+(b * c)))
 
    return [p, q]
 
 
# Driver Code
A = 10
B = 15
C = 20
D = 25
 
# Function Call
ans = Diagonals(A, B, C, D)
 
# Print the final answer
print(round(ans[0], 2), round(ans[1], 2))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Function to calcualte the length of
// diagonals of a cyclic quadrilateral
static List<float> Diagonals(int a, int b,
                             int c, int d)
{
  List<float> ans = new List<float>();
  ans.Add((float) Math.Sqrt(((a * c) + (b * d)) *
                            ((a * d) + (b * c)) /
                            ((a * b) + (c * d))));
  ans.Add((float) Math.Sqrt(((a * c) + (b * d)) *
                            ((a * b) + (c * d)) /
                            ((a * d) + (b * c))));
  return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
  int A = 10;
  int B = 15;
  int C = 20;
  int D = 25;
 
  // Function Call
  List<float> ans = Diagonals(A, B,
                              C, D);
 
  // Print the readonly answer
  Console.Write("{0:F2} {1:F2}",
                 (ans[0]) + .01,
                  ans[1] + .01);
}
}
 
// This code is contributed by 29AjayKumar
chevron_right

Output: 
22.06 26.07







 

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : amit143katiyar, 29AjayKumar

Article Tags :
Practice Tags :