# Length of Diagonals of a Cyclic Quadrilateral using the length of Sides.

Given integers A, B, C, and D, denoting the length of sides of a Cyclic Quadrilateral, the task is to find the length of diagonals of a cyclic quadrilateral.

Examples:

Input: A = 10, B = 15, C = 20, D = 25
Output: 22.06 26.07
Input: A = 10, B = 30, C =50, D = 20
Output: 37.93 29.0

Approach: The length of diagonals can be calculated using the following equations:

Below is the implementation of the above approach:

 // C++ Program to implement // the above approach #include  using namespace std;   // Function to calcualte the length of // diagonals of a cyclic quadrilateral vector<float> Diagonals(int a, int b,                          int c, int d) {     vector<float> ans;     ans.push_back(sqrt(((a * c) + (b * d)) *                         ((a * d) + (b * c)) /                         ((a * b) + (c * d))));     ans.push_back(sqrt(((a * c) + (b * d)) *                         ((a * b) + (c * d)) /                         ((a * d) + (b * c))));     return ans; }   // Driver Code int main() {     int A = 10;     int B = 15;     int C = 20;     int D = 25;       // Function Call     vector<float> ans = Diagonals(A, B, C, D);       // Print the final answer     printf("%.2f %.2f",             (ans[0]) + .01,              ans[1] + .01); }   // This code is contributed by Amit Katiyar

 // Java Program to implement // the above approach import java.util.*; class GFG{   // Function to calcualte the length of // diagonals of a cyclic quadrilateral static Vector Diagonals(int a, int b,                                 int c, int d) {     Vector ans = new Vector();     ans.add((float) Math.sqrt(((a * c) + (b * d)) *                                ((a * d) + (b * c)) /                                ((a * b) + (c * d))));     ans.add((float) Math.sqrt(((a * c) + (b * d)) *                                ((a * b) + (c * d)) /                                ((a * d) + (b * c))));     return ans; }   // Driver Code public static void main(String[] args) {     int A = 10;     int B = 15;     int C = 20;     int D = 25;       // Function Call     Vector ans = Diagonals(A, B,                                    C, D);       // Print the final answer     System.out.printf("%.2f %.2f",                        (ans.get(0)) + .01,                         ans.get(1) + .01); } }   // This code is contributed by 29AjayKumar

 # Python3 program to implement # the above approach   import math   # Function to calcualte the length of # diagonals of a cyclic quadrilateral def Diagonals(a, b, c, d):       p = math.sqrt(((a * c)+(b * d))*((a * d)+(b * c))                   / ((a * b)+(c * d)))     q = math.sqrt(((a * c)+(b * d))*((a * b)+(c * d))                   / ((a * d)+(b * c)))       return [p, q]     # Driver Code A = 10 B = 15 C = 20 D = 25   # Function Call ans = Diagonals(A, B, C, D)   # Print the final answer print(round(ans[0], 2), round(ans[1], 2))

 // C# Program to implement // the above approach using System; using System.Collections.Generic; class GFG{   // Function to calcualte the length of // diagonals of a cyclic quadrilateral static List<float> Diagonals(int a, int b,                               int c, int d) {   List<float> ans = new List<float>();   ans.Add((float) Math.Sqrt(((a * c) + (b * d)) *                              ((a * d) + (b * c)) /                              ((a * b) + (c * d))));   ans.Add((float) Math.Sqrt(((a * c) + (b * d)) *                              ((a * b) + (c * d)) /                              ((a * d) + (b * c))));   return ans; }   // Driver Code public static void Main(String[] args) {   int A = 10;   int B = 15;   int C = 20;   int D = 25;     // Function Call   List<float> ans = Diagonals(A, B,                                C, D);     // Print the readonly answer   Console.Write("{0:F2} {1:F2}",                   (ans[0]) + .01,                    ans[1] + .01); } }    // This code is contributed by 29AjayKumar

Output:
22.06 26.07



Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : amit143katiyar, 29AjayKumar

Article Tags :
Practice Tags :