Length of all prefixes that are also the suffixes of given string
Given a string S consisting of N characters, the task is to find the length of all prefixes of the given string S that are also suffixes of the same string S.
Examples:
Input: S = “ababababab”
Output: 2 4 6 8
Explanation:
The prefixes of S that are also its suffixes are:
- “ab” of length = 2
- “abab” of length = 4
- “ababab” of length = 6
- “abababab” of length = 8
Input: S = “geeksforgeeks”
Output: 5
Naive Approach: The simplest approach to solve the given problem is by using hashing to store the prefixes of the given string. Then, iterate through all the suffixes and check if they are present in the hash map or not. Follow the steps below to solve the problem:
- Initialize two deques, say prefix and suffix to store the prefix string and suffix strings of S.
- Initialize a HashMap, say M to store all the prefixes of S.
- Traverse the given string S over the range [0, N – 2] using the variable i
- Push the current character at the back of prefix and suffix deque.
- Mark prefix as true in the HashMap M.
- After the loop, add the last character of the string, say S[N – 1] to the suffix.
- Iterate over the range [0, N – 2] and perform the following steps:
- Remove the front character of the suffix.
- Now, check if the current deque is present in the HashMap M or not. If found to be true, then print the size of the deque.
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the length of all // prefixes of the given string that // are also suffixes of the same string void countSamePrefixSuffix(string s, int n) { // Stores the prefixes of the string unordered_map<deque<char>, int> cnt; // Stores the prefix & suffix strings deque<char> prefix, suffix; // Iterate in the range [0, n - 2] for (int i = 0; i < n - 1; i++) { // Add the current character to // the prefix and suffix strings prefix.push_back(s[i]); suffix.push_back(s[i]); // Mark the prefix as 1 in // the HashMap cnt[prefix] = 1; } // Add the last character to // the suffix suffix.push_back(s[n - 1]); int index = n - 1; // Iterate in the range [0, n - 2] for (int i = 0; i < n - 1; i++) { // Remove the character from // the front of suffix deque // to get the suffix string suffix.pop_front(); // Check if the suffix is // present in HashMap or not if (cnt[suffix] == 1) { cout << index << " "; } index--; } } // Driver Code int main() { string S = "ababababab"; int N = S.size(); countSamePrefixSuffix(S, N); return 0; }
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG { public static void countSamePrefixSuffix(String s, int n) { // Stores the prefixes of the string HashMap<String, Integer> cnt = new HashMap<>(); // Iterate in the range [0, n - 2] for (int i = 0; i < n - 1; i++) { String prefix = s.substring(0, i + 1); // Mark the prefix as 1 in // the dictionary cnt.put(prefix, 1); } int index = n; // Iterate in the range [0, n - 2] for (int i = 0; i < n - 1; i++) { String suffix = s.substring(i); // Check if the suffix is // present in dictionary or not if (cnt.containsKey(suffix)) { System.out.print(index + " "); } index--; } } public static void main(String[] args) { String s = "ababababab"; int n = s.length(); countSamePrefixSuffix(s, n); } } // This code is contributed by lokesh.
Python3
# Python3 code to implement the approach # Function to find the length of all # prefixes of the given string that # are also suffixes of the same string def count_same_prefix_suffix(s: str, n: int) -> None: # Stores the prefixes of the string cnt = {} # Stores the prefix & suffix strings prefix, suffix = [], [] # Iterate in the range [0, n - 2] for i in range(n - 1): # Add the current character to # the prefix and suffix strings prefix.append(s[i]) suffix.append(s[i]) # Mark the prefix as 1 in # the dictionary cnt[str(prefix)] = 1 # Add the last character to # the suffix suffix.append(s[n - 1]) index = n - 1 # Iterate in the range [0, n - 2] for i in range(n - 1): # Remove the character from # the front of suffix deque # to get the suffix string suffix.pop(0) # Check if the suffix is # present in dictionary or not if cnt.get(str(suffix)) == 1: print(index, end = " ") index -= 1 S = 'ababababab' N = len(S) count_same_prefix_suffix(S, N) # This code is contributed by phasing17
C#
// C# implementation of the above approach using System; using System.Collections.Generic; public class GFG { static void countSamePrefixSuffix(string s, int n) { // Stores the prefixes of the string Dictionary<string, int> cnt = new Dictionary<string, int>(); // Iterate in the range [0, n - 2] for (int i = 0; i < n - 1; i++) { string prefix = s.Substring(0, i + 1); // Mark the prefix as 1 in the dictionary cnt[prefix] = 1; } int index = n; // Iterate in the range [0, n - 2] for (int i = 0; i < n - 1; i++) { string suffix = s.Substring(i); // Check if the suffix is present in dictionary // or not if (cnt.ContainsKey(suffix)) { Console.Write(index + " "); } index--; } } static public void Main() { // Code string s = "ababababab"; int n = s.Length; countSamePrefixSuffix(s, n); } } // This code is contributed by lokeshmvs21.
Javascript
function count_same_prefix_suffix(s, n) { // Stores the prefixes of the string let cnt = {}; // Stores the prefix & suffix strings let prefix = [], suffix = []; // Iterate in the range [0, n - 2] for (let i = 0; i < n - 1; i++) { // Add the current character to // the prefix and suffix strings prefix.push(s[i]); suffix.push(s[i]); // Mark the prefix as 1 in // the dictionary cnt[prefix.join("")] = 1; } // Add the last character to // the suffix suffix.push(s[n - 1]); let index = n - 1; // Iterate in the range [0, n - 2] for (let i = 0; i < n - 1; i++) { // Remove the character from // the front of suffix deque // to get the suffix string suffix.shift(); // Check if the suffix is // present in dictionary or not if (cnt[suffix.join("")]) { process.stdout.write(index + ' '); } index -= 1; } } let S = 'ababababab' let N = S.length count_same_prefix_suffix(S, N) // This code is contributed by phasing17
8 6 4 2
Time Complexity: O(N * N), where N is the length of the given string.
Auxiliary Space: O(N), for storing all the prefix strings of length [1, 2, …., N – 2, N – 1] in the HashMap.
Better Approach: The above approach can also be optimized by using traverse the given string, S from the start, and in each iteration add the current character to the prefix string, and check if the prefix string is the same as the suffix of the same length or not. If found to be true, then print the length of the prefix string. Otherwise, check for the next prefix.
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the length of all // prefixes of the given string that // are also suffixes of the same string void countSamePrefixSuffix(string s, int n) { // Stores the prefix string string prefix = ""; // Traverse the string S for (int i = 0; i < n - 1; i++) { // Add the current character // to the prefix string prefix += s[i]; // Store the suffix string string suffix = s.substr( n - 1 - i, n - 1); // Check if both the strings // are equal or not if (prefix == suffix) { cout << prefix.size() << " "; } } } // Driver Code int main() { string S = "ababababab"; int N = S.size(); countSamePrefixSuffix(S, N); return 0; }
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG { // Function to find the length of all // prefixes of the given string that // are also suffixes of the same string static void countSamePrefixSuffix(String s, int n) { // Stores the prefix string String prefix = ""; // Traverse the string S for (int i = 0; i < n - 1; i++) { // Add the current character // to the prefix string prefix += s.charAt(i); // Store the suffix string String suffix = s.substring(n - 1 - i, n); // Check if both the strings // are equal or not if (prefix.equals(suffix)) { System.out.print(prefix.length() + " "); } } } // Driver Code public static void main(String[] args) { String S = "ababababab"; int N = S.length(); countSamePrefixSuffix(S, N); } } // This code is contributed by Kingash
Python3
# Python3 program for the above approach # Function to find the length of all # prefixes of the given that # are also suffixes of the same string def countSamePrefixSuffix(s, n): # Stores the prefix string prefix = "" # Traverse the S for i in range(n - 1): # Add the current character # to the prefix string prefix += s[i] # Store the suffix string suffix = s[n - 1 - i: 2 * n - 2 - i] # Check if both the strings # are equal or not if (prefix == suffix): print(len(prefix), end = " ") # Driver Code if __name__ == '__main__': S = "ababababab" N = len(S) countSamePrefixSuffix(S, N) # This code is contributed by mohit kumar 29
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to find the length of all // prefixes of the given string that // are also suffixes of the same string static void countSamePrefixSuffix(string s, int n) { // Stores the prefix string string prefix = ""; // Traverse the string S for (int i = 0; i < n - 1; i++) { // Add the current character // to the prefix string prefix += s[i]; // Store the suffix string string suffix = s.Substring(n - 1 - i, i + 1); // Check if both the strings // are equal or not if (prefix == suffix) { Console.Write(prefix.Length + " "); } } } // Driver Code public static void Main() { string S = "ababababab"; int N = S.Length; countSamePrefixSuffix(S, N); } } // This code is contributed by SURENDRA_GANGWAR.
Javascript
<script> // JavaScript program for the above approach // Function to find the length of all // prefixes of the given string that // are also suffixes of the same string function countSamePrefixSuffix( s, n) { // Stores the prefix string var prefix = ""; // Traverse the string S for(let i = 0; i < n - 1; i++) { // Add the current character // to the prefix string prefix += s.charAt(i); // Store the suffix string var suffix = s.substring(n - 1 - i, n); // Check if both the strings // are equal or not if (prefix==suffix) { document.write(prefix.length + " "); } } } // Driver Code let S = "ababababab"; let N = S.length; countSamePrefixSuffix(S, N); </script>
2 4 6 8
Time Complexity: O(N2)
Auxiliary Space: O(N)
Please Login to comment...