Least common element in given two Arithmetic sequences
Given four positive numbers A, B, C, D, such that A and B are the first term and the common difference of first Arithmetic sequence respectively, while C and D represent the same for the second Arithmetic sequence respectively as shown below:
First Arithmetic Sequence: A, A + B, A + 2B, A + 3B, …….
Second Arithmetic Sequence: C, C + D, C + 2D, C + 3D, …….
The task is to find the least common element from the above AP sequences. If no such number exists, then print -1.
Examples:
Input: A = 2, B = 20, C = 19, D = 9
Output: 82
Explanation:
Sequence 1: {2, 2 + 20, 2 + 2(20), 2 + 3(20), 2 + 4(20), …..} = {2, 22, 42, 62, 82, …..}
Sequence 2: {19, 19 + 9, 19 + 2(9), 19 + 3(9), 19 + 4(9), 19 + 5(9), 19 + 6(9), 19 + 7(9) …..} = {19, 28, 37, 46, 55, 64, 73, 82, …..}
Therefore, 82 is the smallest common element.
Input: A = 2, B = 18, C = 19, D = 9
Output: -1
Approach:
Since any term of the given two sequences can be expressed as A + x*B and C + y*D, therefore, to solve the problem, we need to find the smallest values of x and y for which the two terms are equal.
Follow the steps below to solve the problem:
- In order to find the smallest value common in both the AP sequences, the idea is to find the smallest integer values of x and y satisfying the following equation:
A + x*B = C + y*D
=> The above equation can be rearranged as
x*B = C – A + y*D
=> The above equation can be further rearranged as
x = (C – A + y*D) / B
- Check if there exists any integer value y such that (C – A + y*D) % B is 0 or not. If it exists, then the smallest number is (C + y*D).
- Check whether (C + y*D) is the answer or not, where y will be in a range (0, B) because from i = B, B+1, …. the remainder values will be repeated.
- If no such number is obtained from the above steps, then print -1.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the smallest element // common in both the subsequences long smallestCommon( long a, long b, long c, long d) { // If a is equal to c if (a == c) return a; // If a exceeds c if (a > c) { swap(a, c); swap(b, d); } long first_term_diff = (c - a); long possible_y; // Check for the satisfying // equation for (possible_y = 0; possible_y < b; possible_y++) { // Least value of possible_y // satisfying the given equation // will yield true in the below if // and break the loop if ((first_term_diff % b + possible_y * d) % b == 0) { break ; } } // If the value of possible_y // satisfying the given equation // lies in range [0, b] if (possible_y != b) { return c + possible_y * d; } // If no value of possible_y // satisfies the given equation return -1; } // Driver Code int main() { long A = 2, B = 20, C = 19, D = 9; cout << smallestCommon(A, B, C, D); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG{ // Function to find the smallest element // common in both the subsequences static int smallestCommon( int a, int b, int c, int d) { // If a is equal to c if (a == c) return a; // If a exceeds c if (a > c) { swap(a, c); swap(b, d); } int first_term_diff = (c - a); int possible_y; // Check for the satisfying // equation for (possible_y = 0 ; possible_y < b; possible_y++) { // Least value of possible_y // satisfying the given equation // will yield true in the below if // and break the loop if ((first_term_diff % b + possible_y * d) % b == 0 ) { break ; } } // If the value of possible_y // satisfying the given equation // lies in range [0, b] if (possible_y != b) { return c + possible_y * d; } // If no value of possible_y // satisfies the given equation return - 1 ; } static void swap( int x, int y) { int temp = x; x = y; y = temp; } // Driver Code public static void main(String[] args) { int A = 2 , B = 20 , C = 19 , D = 9 ; System.out.print(smallestCommon(A, B, C, D)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to implement # the above approach # Function to find the smallest element # common in both the subsequences def smallestCommon(a, b, c, d): # If a is equal to c if (a = = c): return a; # If a exceeds c if (a > c): swap(a, c); swap(b, d); first_term_diff = (c - a); possible_y = 0 ; # Check for the satisfying # equation for possible_y in range (b): # Least value of possible_y # satisfying the given equation # will yield True in the below if # and break the loop if ((first_term_diff % b + possible_y * d) % b = = 0 ): break ; # If the value of possible_y # satisfying the given equation # lies in range [0, b] if (possible_y ! = b): return c + possible_y * d; # If no value of possible_y # satisfies the given equation return - 1 ; def swap(x, y): temp = x; x = y; y = temp; # Driver Code if __name__ = = '__main__' : A = 2 ; B = 20 ; C = 19 ; D = 9 ; print (smallestCommon(A, B, C, D)); # This code is contributed by Rajput-Ji |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to find the smallest element // common in both the subsequences static int smallestCommon( int a, int b, int c, int d) { // If a is equal to c if (a == c) return a; // If a exceeds c if (a > c) { swap(a, c); swap(b, d); } int first_term_diff = (c - a); int possible_y; // Check for the satisfying // equation for (possible_y = 0; possible_y < b; possible_y++) { // Least value of possible_y // satisfying the given equation // will yield true in the below if // and break the loop if ((first_term_diff % b + possible_y * d) % b == 0) { break ; } } // If the value of possible_y // satisfying the given equation // lies in range [0, b] if (possible_y != b) { return c + possible_y * d; } // If no value of possible_y // satisfies the given equation return -1; } static void swap( int x, int y) { int temp = x; x = y; y = temp; } // Driver Code public static void Main(String[] args) { int A = 2, B = 20, C = 19, D = 9; Console.Write(smallestCommon(A, B, C, D)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program for the // above approach // Function to find the smallest element // common in both the subsequences function smallestCommon(a, b, c, d) { // If a is equal to c if (a == c) return a; // If a exceeds c if (a > c) { swap(a, c); swap(b, d); } let first_term_diff = (c - a); let possible_y; // Check for the satisfying // equation for (possible_y = 0; possible_y < b; possible_y++) { // Least value of possible_y // satisfying the given equation // will yield true in the below if // and break the loop if ((first_term_diff % b + possible_y * d) % b == 0) { break ; } } // If the value of possible_y // satisfying the given equation // lies in range [0, b] if (possible_y != b) { return c + possible_y * d; } // If no value of possible_y // satisfies the given equation return -1; } function swap(x, y) { let temp = x; x = y; y = temp; } // Driver Code let A = 2, B = 20, C = 19, D = 9; document.write(smallestCommon(A, B, C, D)); </script> |
82
Time Complexity: O(B)
Auxiliary Space: O(1)
Please Login to comment...