Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Least common element in given two Arithmetic sequences

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given four positive numbers A, B, C, D, such that A and B are the first term and the common difference of first Arithmetic sequence respectively, while C and D represent the same for the second Arithmetic sequence respectively as shown below: 
 

First Arithmetic Sequence: A, A + B, A + 2B, A + 3B, ……. 
Second Arithmetic Sequence: C, C + D, C + 2D, C + 3D, ……. 
 

The task is to find the least common element from the above AP sequences. If no such number exists, then print -1.

 

Examples:

 

Input: A = 2, B = 20, C = 19, D = 9 
Output: 82 
Explanation: 
Sequence 1: {2, 2 + 20, 2 + 2(20), 2 + 3(20), 2 + 4(20), …..} = {2, 22, 42, 62, 82, …..} 
Sequence 2: {19, 19 + 9, 19 + 2(9), 19 + 3(9), 19 + 4(9), 19 + 5(9), 19 + 6(9), 19 + 7(9) …..} = {19, 28, 37, 46, 55, 64, 73, 82, …..} 
Therefore, 82 is the smallest common element.

 

Input: A = 2, B = 18, C = 19, D = 9 
Output: -1

 

 

 

Approach:

Since any term of the given two sequences can be expressed as A + x*B and C + y*D, therefore, to solve the problem, we need to find the smallest values of x and y for which the two terms are equal. 
Follow the steps below to solve the problem: 
 

  • In order to find the smallest value common in both the AP sequences, the idea is to find the smallest integer values of x and y satisfying the following equation: 
     

A + x*B = C + y*D

=> The above equation can be rearranged as 
x*B = C – A + y*D
=> The above equation can be further rearranged as 
x = (C – A + y*D) / B 
 

  • Check if there exists any integer value y such that (C – A + y*D) % B is 0 or not. If it exists, then the smallest number is (C + y*D).
  • Check whether (C + y*D) is the answer or not, where y will be in a range (0, B) because from i = B, B+1, …. the remainder values will be repeated.
  • If no such number is obtained from the above steps, then print -1.

 

Below is the implementation of the above approach:

 

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the smallest element
// common in both the subsequences
long smallestCommon(long a, long b,
                    long c, long d)
{
    // If a is equal to c
    if (a == c)
        return a;
 
    // If a exceeds c
    if (a > c) {
        swap(a, c);
        swap(b, d);
    }
 
    long first_term_diff = (c - a);
    long possible_y;
 
    // Check for the satisfying
    // equation
    for (possible_y = 0; possible_y < b; possible_y++) {
 
        // Least value of possible_y
        // satisfying the given equation
        // will yield true in the below if
        // and break the loop
        if ((first_term_diff % b
             + possible_y * d)
                % b
            == 0) {
            break;
        }
    }
 
    // If the value of possible_y
    // satisfying the given equation
    // lies in range [0, b]
    if (possible_y != b) {
        return c + possible_y * d;
    }
 
    // If no value of possible_y
    // satisfies the given equation
    return -1;
}
 
// Driver Code
int main()
{
    long A = 2, B = 20, C = 19, D = 9;
    cout << smallestCommon(A, B, C, D);
 
    return 0;
}

Java




// Java program to implement
// the above approach
import java.util.*;
class GFG{
 
// Function to find the smallest element
// common in both the subsequences
static int smallestCommon(int a, int b,
                          int c, int d)
{
    // If a is equal to c
    if (a == c)
        return a;
 
    // If a exceeds c
    if (a > c)
    {
        swap(a, c);
        swap(b, d);
    }
 
    int first_term_diff = (c - a);
    int possible_y;
 
    // Check for the satisfying
    // equation
    for (possible_y = 0;
         possible_y < b; possible_y++)
    {
 
        // Least value of possible_y
        // satisfying the given equation
        // will yield true in the below if
        // and break the loop
        if ((first_term_diff % b +
             possible_y * d) % b == 0)
        {
            break;
        }
    }
 
    // If the value of possible_y
    // satisfying the given equation
    // lies in range [0, b]
    if (possible_y != b)
    {
        return c + possible_y * d;
    }
 
    // If no value of possible_y
    // satisfies the given equation
    return -1;
}
   
static void swap(int x, int y)
{
      int temp = x;
      x = y;
      y = temp;
}
   
// Driver Code
public static void main(String[] args)
{
    int A = 2, B = 20, C = 19, D = 9;
    System.out.print(smallestCommon(A, B, C, D));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 program to implement
# the above approach
 
# Function to find the smallest element
# common in both the subsequences
def smallestCommon(a, b, c, d):
   
    # If a is equal to c
    if (a == c):
        return a;
 
    # If a exceeds c
    if (a > c):
        swap(a, c);
        swap(b, d);
 
    first_term_diff = (c - a);
    possible_y = 0;
 
    # Check for the satisfying
    # equation
    for possible_y in range(b):
 
        # Least value of possible_y
        # satisfying the given equation
        # will yield True in the below if
        # and break the loop
        if ((first_term_diff % b +
             possible_y * d) % b == 0):
            break;
 
    # If the value of possible_y
    # satisfying the given equation
    # lies in range [0, b]
    if (possible_y != b):
        return c + possible_y * d;
 
    # If no value of possible_y
    # satisfies the given equation
    return -1;
 
def swap(x, y):
    temp = x;
    x = y;
    y = temp;
 
# Driver Code
if __name__ == '__main__':
    A = 2; B = 20; C = 19; D = 9;
    print(smallestCommon(A, B, C, D));
 
# This code is contributed by Rajput-Ji

C#




// C# program to implement
// the above approach
using System;
class GFG{
    
// Function to find the smallest element
// common in both the subsequences
static int smallestCommon(int a, int b,
                          int c, int d)
{
    // If a is equal to c
    if (a == c)
        return a;
 
    // If a exceeds c
    if (a > c)
    {
        swap(a, c);
        swap(b, d);
    }
 
    int first_term_diff = (c - a);
    int possible_y;
 
    // Check for the satisfying
    // equation
    for (possible_y = 0;
         possible_y < b; possible_y++)
    {
 
        // Least value of possible_y
        // satisfying the given equation
        // will yield true in the below if
        // and break the loop
        if ((first_term_diff % b +
             possible_y * d) % b == 0)
        {
            break;
        }
    }
 
    // If the value of possible_y
    // satisfying the given equation
    // lies in range [0, b]
    if (possible_y != b)
    {
        return c + possible_y * d;
    }
 
    // If no value of possible_y
    // satisfies the given equation
    return -1;
}
   
static void swap(int x, int y)
{
      int temp = x;
      x = y;
      y = temp;
}
   
// Driver Code
public static void Main(String[] args)
{
    int A = 2, B = 20, C = 19, D = 9;
    Console.Write(smallestCommon(A, B, C, D));
}
}
 
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// JavaScript program for the
// above approach
 
// Function to find the smallest element
// common in both the subsequences
function smallestCommon(a, b, c, d)
{
    // If a is equal to c
    if (a == c)
        return a;
  
    // If a exceeds c
    if (a > c)
    {
        swap(a, c);
        swap(b, d);
    }
  
    let first_term_diff = (c - a);
    let possible_y;
  
    // Check for the satisfying
    // equation
    for (possible_y = 0;
         possible_y < b; possible_y++)
    {
  
        // Least value of possible_y
        // satisfying the given equation
        // will yield true in the below if
        // and break the loop
        if ((first_term_diff % b +
             possible_y * d) % b == 0)
        {
            break;
        }
    }
  
    // If the value of possible_y
    // satisfying the given equation
    // lies in range [0, b]
    if (possible_y != b)
    {
        return c + possible_y * d;
    }
  
    // If no value of possible_y
    // satisfies the given equation
    return -1;
}
    
function swap(x, y)
{
      let temp = x;
      x = y;
      y = temp;
}
 
// Driver Code
 
    let A = 2, B = 20, C = 19, D = 9;
    document.write(smallestCommon(A, B, C, D));
 
</script>

Output: 

82

 

Time Complexity: O(B)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 07 May, 2021
Like Article
Save Article
Similar Reads
Related Tutorials