Given 3 strings of all having length < 100,the task is to find the longest common sub-sequence in all three given sequences.
Examples:
Input : str1 = "geeks" str2 = "geeksfor" str3 = "geeksforgeeks" Output : 5 Longest common subsequence is "geeks" i.e., length = 5 Input : str1 = "abcd1e2" str2 = "bc12ea" str3 = "bd1ea" Output : 3 Longest common subsequence is "b1e" i.e. length = 3.
This problem is simply an extension of LCS
Let the input sequences be X[0..m-1], Y[0..n-1] and Z[0..o-1] of lengths m, n and o respectively. And let L(X[0..m-1], Y[0..n-1], Z[0..o-1]) be the lengths of LCS of the three sequences X, Y and Z. Following is the implementation:
The idea is to take a 3D array to store the length of common subsequence in all 3 given sequences i. e., L[m + 1][n + 1][o + 1] 1- If any of the string is empty then there is no common subsequence at all then L[i][j][k] = 0 2- If the characters of all sequences match (or X[i] == Y[j] ==Z[k]) then L[i][j][k] = 1 + L[i-1][j-1][k-1] 3- If the characters of both sequences do not match (or X[i] != Y[j] || X[i] != Z[k] || Y[j] !=Z[k]) then L[i][j][k] = max(L[i-1][j][k], L[i][j-1][k], L[i][j][k-1])
Below is implementation of above idea.
C++
// C++ program to find LCS of three strings #include<bits/stdc++.h> using namespace std; /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ int lcsOf3( string X, string Y, string Z, int m, int n, int o) { int L[m+1][n+1][o+1]; /* Following steps build L[m+1][n+1][o+1] in bottom up fashion. Note that L[i][j][k] contains length of LCS of X[0..i-1] and Y[0..j-1] and Z[0.....k-1]*/ for ( int i=0; i<=m; i++) { for ( int j=0; j<=n; j++) { for ( int k=0; k<=o; k++) { if (i == 0 || j == 0||k==0) L[i][j][k] = 0; else if (X[i-1] == Y[j-1] && X[i-1]==Z[k-1]) L[i][j][k] = L[i-1][j-1][k-1] + 1; else L[i][j][k] = max(max(L[i-1][j][k], L[i][j-1][k]), L[i][j][k-1]); } } } /* L[m][n][o] contains length of LCS for X[0..n-1] and Y[0..m-1] and Z[0..o-1]*/ return L[m][n][o]; } /* Driver program to test above function */ int main() { string X = "AGGT12" ; string Y = "12TXAYB" ; string Z = "12XBA" ; int m = X.length(); int n = Y.length(); int o = Z.length(); cout << "Length of LCS is " << lcsOf3(X, Y, Z, m, n, o); return 0; } |
Java
// Java program to find LCS of three strings public class LCS_3Strings { /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ static int lcsOf3(String X, String Y, String Z, int m, int n, int o) { int [][][] L = new int [m+ 1 ][n+ 1 ][o+ 1 ]; /* Following steps build L[m+1][n+1][o+1] in bottom up fashion. Note that L[i][j][k] contains length of LCS of X[0..i-1] and Y[0..j-1] and Z[0.....k-1]*/ for ( int i= 0 ; i<=m; i++) { for ( int j= 0 ; j<=n; j++) { for ( int k= 0 ; k<=o; k++) { if (i == 0 || j == 0 ||k== 0 ) L[i][j][k] = 0 ; else if (X.charAt(i - 1 ) == Y.charAt(j - 1 ) && X.charAt(i - 1 )==Z.charAt(k - 1 )) L[i][j][k] = L[i- 1 ][j- 1 ][k- 1 ] + 1 ; else L[i][j][k] = Math.max(Math.max(L[i- 1 ][j][k], L[i][j- 1 ][k]), L[i][j][k- 1 ]); } } } /* L[m][n][o] contains length of LCS for X[0..n-1] and Y[0..m-1] and Z[0..o-1]*/ return L[m][n][o]; } /* Driver program to test above function */ public static void main(String args[]) { String X = "AGGT12" ; String Y = "12TXAYB" ; String Z = "12XBA" ; int m = X.length(); int n = Y.length(); int o = Z.length(); System.out.println( "Length of LCS is " + lcsOf3(X, Y,Z, m, n, o)); } } // This code is contributed by Sumit Ghosh |
Python3
# Python program to find # LCS of three strings # Returns length of LCS # for X[0..m-1], Y[0..n-1] # and Z[0..o-1] def lcsOf3(X, Y, Z, m, n, o): L = [[[ 0 for i in range (o + 1 )] for j in range (n + 1 )] for k in range (m + 1 )] ''' Following steps build L[m+1][n+1][o+1] in bottom up fashion. Note that L[i][j][k] contains length of LCS of X[0..i-1] and Y[0..j-1] and Z[0.....k-1] ''' for i in range (m + 1 ): for j in range (n + 1 ): for k in range (o + 1 ): if (i = = 0 or j = = 0 or k = = 0 ): L[i][j][k] = 0 elif (X[i - 1 ] = = Y[j - 1 ] and X[i - 1 ] = = Z[k - 1 ]): L[i][j][k] = L[i - 1 ][j - 1 ][k - 1 ] + 1 else : L[i][j][k] = max ( max (L[i - 1 ][j][k], L[i][j - 1 ][k]), L[i][j][k - 1 ]) # L[m][n][o] contains length of LCS for # X[0..n-1] and Y[0..m-1] and Z[0..o-1] return L[m][n][o] # Driver program to test above function X = 'AGGT12' Y = '12TXAYB' Z = '12XBA' m = len (X) n = len (Y) o = len (Z) print ( 'Length of LCS is' , lcsOf3(X, Y, Z, m, n, o)) # This code is contributed by Soumen Ghosh. |
C#
// C# program to find // LCS of three strings using System; class GFG { /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ static int lcsOf3(String X, String Y, String Z, int m, int n, int o) { int [,,]L = new int [m + 1, n + 1, o + 1]; /* Following steps build L[m+1][n+1][o+1] in bottom up fashion. Note that L[i][j][k] contains length of LCS of X[0..i-1] and Y[0..j-1] and Z[0.....k-1]*/ for ( int i = 0; i <= m; i++) { for ( int j = 0; j <= n; j++) { for ( int k = 0; k <= o; k++) { if (i == 0 || j == 0 || k == 0) L[i, j, k] = 0; else if (X[i - 1] == Y[j - 1] && X[i - 1] == Z[k - 1]) L[i, j, k] = L[i - 1, j - 1, k - 1] + 1; else L[i, j, k] = Math.Max(Math.Max(L[i - 1, j, k], L[i, j - 1, k]), L[i, j, k - 1]); } } } /* L[m][n][o] contains length of LCS for X[0..n-1] and Y[0..m-1] and Z[0..o-1]*/ return L[m, n, o]; } // Driver Code public static void Main() { string X = "AGGT12" ; string Y = "12TXAYB" ; string Z = "12XBA" ; int m = X.Length; int n = Y.Length; int o = Z.Length; Console.Write( "Length of LCS is " + lcsOf3(X, Y, Z, m, n, o)); } } // This code is contributed // by shiv_bhakt. |
PHP
<?php // PHP program to find // LCS of three strings /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ function lcsOf3( $X , $Y , $Z , $m , $n , $o ) { $L [ $m + 1][ $n + 1][ $o + 1] = array ( array ( array ())); /* Following steps build L[m+1][n+1][o+1] in bottom up fashion. Note that L[i][j][k] contains length of LCS of X[0..i-1] and Y[0..j-1] and Z[0.....k-1]*/ for ( $i = 0; $i <= $m ; $i ++) { for ( $j = 0; $j <= $n ; $j ++) { for ( $k = 0; $k <= $o ; $k ++) { if ( $i == 0 || $j == 0|| $k == 0) $L [ $i ][ $j ][ $k ] = 0; else if ( $X [ $i - 1] == $Y [ $j - 1] && $X [ $i - 1] == $Z [ $k - 1]) $L [ $i ][ $j ][ $k ] = $L [ $i - 1][ $j - 1][ $k - 1] + 1; else $L [ $i ][ $j ][ $k ] = max(max( $L [ $i - 1][ $j ][ $k ], $L [ $i ][ $j - 1][ $k ]), $L [ $i ][ $j ][ $k - 1]); } } } /* L[m][n][o] contains length of LCS for X[0..n-1] and Y[0..m-1] and Z[0..o-1]*/ return $L [ $m ][ $n ][ $o ]; } // Driver code $X = "AGGT12" ; $Y = "12TXAYB" ; $Z = "12XBA" ; $m = strlen ( $X ); $n = strlen ( $Y ); $o = strlen ( $Z ); echo "Length of LCS is " . lcsOf3( $X , $Y , $Z , $m , $n , $o ); // This code is contributed // by ChitraNayal ?> |
Output:
Length of LCS is 2
Another approach: (Using recursion)
C++
// C++ program to find LCS of three strings #include<bits/stdc++.h> using namespace std; string X = "AGGT12" ; string Y = "12TXAYB" ; string Z = "12XBA" ; int dp[100][100][100]; /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ int lcsOf3( int i, int j, int k) { if (i==-1||j==-1||k==-1) return 0; if (dp[i][j][k]!=-1) return dp[i][j][k]; if (X[i]==Y[j] && Y[j]==Z[k]) return dp[i][j][k] = 1+lcsOf3(i-1,j-1,k-1); else return dp[i][j][k] = max(max(lcsOf3(i-1,j,k), lcsOf3(i,j-1,k)),lcsOf3(i,j,k-1)); } // Driver code int main() { memset (dp, -1, sizeof (dp)); int m = X.length(); int n = Y.length(); int o = Z.length(); cout << "Length of LCS is " << lcsOf3(m-1,n-1,o-1); // this code is contributed by Kushdeep Mittal } |
Java
// Java program to find LCS of three strings class GFG { static String X = "AGGT12" ; static String Y = "12TXAYB" ; static String Z = "12XBA" ; static int [][][] dp = new int [ 100 ][ 100 ][ 100 ]; /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ static int lcsOf3( int i, int j, int k) { if (i == - 1 || j == - 1 || k == - 1 ) { return 0 ; } if (dp[i][j][k] != - 1 ) { return dp[i][j][k]; } if (X.charAt(i) == Y.charAt(j) && Y.charAt(j) == Z.charAt(k)) { return dp[i][j][k] = 1 + lcsOf3(i - 1 , j - 1 , k - 1 ); } else { return dp[i][j][k] = Math.max(Math.max(lcsOf3(i - 1 , j, k), lcsOf3(i, j - 1 , k)), lcsOf3(i, j, k - 1 )); } } // Driver code public static void main(String[] args) { for ( int i = 0 ; i < 100 ; i++) { for ( int j = 0 ; j < 100 ; j++) { for ( int k = 0 ; k < 100 ; k++) { dp[i][j][k] = - 1 ; } } } int m = X.length(); int n = Y.length(); int o = Z.length(); System.out.print( "Length of LCS is " + lcsOf3(m - 1 , n - 1 , o - 1 )); } } // This code has been contributed by 29AjayKumar |
Python3
# Python3 program to find LCS of # three strings X = "AGGT12" Y = "12TXAYB" Z = "12XBA" dp = [[[ - 1 for i in range ( 100 )] for j in range ( 100 )] for k in range ( 100 )] # Returns length of LCS for # X[0..m-1], Y[0..n-1] and Z[0..o-1] def lcsOf3(i, j, k) : if (i = = - 1 or j = = - 1 or k = = - 1 ) : return 0 if (dp[i][j][k] ! = - 1 ) : return dp[i][j][k] if (X[i] = = Y[j] and Y[j] = = Z[k]) : dp[i][j][k] = 1 + lcsOf3(i - 1 , j - 1 , k - 1 ) return dp[i][j][k] else : dp[i][j][k] = max ( max (lcsOf3(i - 1 , j, k), lcsOf3(i, j - 1 , k)), lcsOf3(i, j, k - 1 )) return dp[i][j][k] # Driver code if __name__ = = "__main__" : m = len (X) n = len (Y) o = len (Z) print ( "Length of LCS is" , lcsOf3(m - 1 , n - 1 , o - 1 )) # This code is contributed by Ryuga |
C#
// C# program to find LCS of three strings using System; class GFG { static string X = "AGGT12" ; static string Y = "12TXAYB" ; static string Z = "12XBA" ; static int [,,] dp = new int [100, 100, 100]; /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ static int lcsOf3( int i, int j, int k) { if (i == -1 || j == -1 || k == -1) return 0; if (dp[i, j, k] != -1) return dp[i, j, k]; if (X[i] == Y[j] && Y[j] == Z[k]) return dp[i, j, k] = 1 + lcsOf3(i - 1, j - 1, k - 1); else return dp[i, j, k] = Math.Max(Math.Max(lcsOf3(i - 1, j, k), lcsOf3(i, j - 1, k)), lcsOf3(i, j, k - 1)); } // Driver code static void Main() { for ( int i = 0; i < 100; i++) for ( int j = 0; j < 100; j++) for ( int k = 0; k < 100; k++) dp[i, j, k] = -1; int m = X.Length; int n = Y.Length; int o = Z.Length; Console.Write( "Length of LCS is " + lcsOf3(m - 1, n - 1, o - 1)); } } // This code is contributed by DrRoot_ |
PHP
<?php // PHP program to find LCS of three strings $X = "AGGT12" ; $Y = "12TXAYB" ; $Z = "12XBA" ; $dp = array_fill (0, 100, array_fill (0, 100, array_fill (0, 100, -1))); /* Returns length of LCS for X[0..m-1], Y[0..n-1] and Z[0..o-1] */ function lcsOf3( $i , $j , $k ) { global $dp , $X , $Y , $Z ; if ( $i == -1 || $j == -1 || $k == -1) return 0; if ( $dp [ $i ][ $j ][ $k ] != -1) return $dp [ $i ][ $j ][ $k ]; if ( $X [ $i ] == $Y [ $j ] && $Y [ $j ] == $Z [ $k ]) return $dp [ $i ][ $j ][ $k ] = 1+lcsOf3( $i - 1, $j - 1, $k - 1); else return $dp [ $i ][ $j ][ $k ] = max(max(lcsOf3( $i - 1, $j , $k ), lcsOf3( $i , $j - 1, $k )), lcsOf3( $i , $j , $k - 1)); } // Driver code $m = strlen ( $X ); $n = strlen ( $Y ); $o = strlen ( $Z ); echo "Length of LCS is " .lcsOf3( $m - 1, $n - 1, $o - 1); // This code is contributed by mits ?> |
Output:
Length of LCS is 2
This article is contributed by Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.