Given two strings s1, s2 and K, find the length of the longest subsequence formed by consecutive segments of at least length K.

Examples:

Input : s1 =aggayxysdfas2 =aggajxaaasdfak = 4 Output : 8 Explanation:aggasdfais the longest subsequence that can be formed by taking consecutive segments, minimum of length 4. Here segments are "agga" and "sdfa" which are of length 4 which is included in making the longest subsequence. Input : s1 = aggasdfas2 = aggajasdfaxy k = 5 Output : 5 Input: s1 = "aabcaaaa" s2 = "baaabcd" k = 3 Output: 4 Explanation: "aabc" is the longest subsequence that is formed by taking segment of minimum length 3. The segment is of length 4.

**Prerequisite **: Longest Common Subsequence

Create a LCS[][] array where LCS_{i, j} denotes the length of the longest common subsequence formed by characters of s1 till i and s2 till j having consecutive segments of at least length K. Create a cnt[][] array to count the length of the common segment. **cnt _{i, j}= cnt_{i-1, j-1}+1** when s1[i-1]==s2[j-1]. If characters are not equal then segments are not equal hence mark cnt

_{i, j}as 0.

When

**cnt**, then update the lcs value by adding the value of cnt

_{i, j}>=k_{i-a, j-a}where a is the length of the segments

**a<=cnt**. The answer for the longest subsequence with consecutive segments of at least length k will be stored in

_{i, j}**lcs[n][m]**where n and m are the length of string1 and string2.

## C++

`// CPP program to find the Length of Longest ` `// subsequence formed by consecutive segments ` `// of at least length K ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Returns the length of the longest common subsequence ` `// with a minimum of length of K consecutive segments ` `int` `longestSubsequenceCommonSegment(` `int` `k, string s1, ` ` ` `string s2) ` `{ ` ` ` `// length of strings ` ` ` `int` `n = s1.length(); ` ` ` `int` `m = s2.length(); ` ` ` ` ` `// declare the lcs and cnt array ` ` ` `int` `lcs[n + 1][m + 1]; ` ` ` `int` `cnt[n + 1][m + 1]; ` ` ` ` ` `// initialize the lcs and cnt array to 0 ` ` ` `memset` `(lcs, 0, ` `sizeof` `(lcs)); ` ` ` `memset` `(cnt, 0, ` `sizeof` `(cnt)); ` ` ` ` ` `// iterate from i=1 to n and j=1 to j=m ` ` ` `for` `(` `int` `i = 1; i <= n; i++) { ` ` ` `for` `(` `int` `j = 1; j <= m; j++) { ` ` ` ` ` `// stores the maximum of lcs[i-1][j] and lcs[i][j-1] ` ` ` `lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1]); ` ` ` ` ` `// when both the characters are equal ` ` ` `// of s1 and s2 ` ` ` `if` `(s1[i - 1] == s2[j - 1]) ` ` ` `cnt[i][j] = cnt[i - 1][j - 1] + 1; ` ` ` ` ` `// when length of common segment is ` ` ` `// more than k, then update lcs answer ` ` ` `// by adding that segment to the answer ` ` ` `if` `(cnt[i][j] >= k) { ` ` ` ` ` `// formulate for all length of segments ` ` ` `// to get the longest subsequence with ` ` ` `// consecutive Common Segment of length ` ` ` `// of min k length ` ` ` `for` `(` `int` `a = k; a <= cnt[i][j]; a++) ` ` ` ` ` `// update lcs value by adding segment length ` ` ` `lcs[i][j] = max(lcs[i][j], ` ` ` `lcs[i - a][j - a] + a); ` ` ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `return` `lcs[n][m]; ` `} ` ` ` `// driver code to check the above function ` `int` `main() ` `{ ` ` ` `int` `k = 4; ` ` ` `string s1 = ` `"aggasdfa"` `; ` ` ` `string s2 = ` `"aggajasdfa"` `; ` ` ` `cout << longestSubsequenceCommonSegment(k, s1, s2); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to find the Length of Longest ` `// subsequence formed by consecutive segments ` `// of at least length K ` ` ` `class` `GFG { ` ` ` ` ` `// Returns the length of the longest common subsequence ` ` ` `// with a minimum of length of K consecutive segments ` ` ` `static` `int` `longestSubsequenceCommonSegment(` `int` `k, String s1, ` ` ` `String s2) ` ` ` `{ ` ` ` `// length of strings ` ` ` `int` `n = s1.length(); ` ` ` `int` `m = s2.length(); ` ` ` ` ` `// declare the lcs and cnt array ` ` ` `int` `lcs[][] = ` `new` `int` `[n + ` `1` `][m + ` `1` `]; ` ` ` `int` `cnt[][] = ` `new` `int` `[n + ` `1` `][m + ` `1` `]; ` ` ` ` ` ` ` `// iterate from i=1 to n and j=1 to j=m ` ` ` `for` `(` `int` `i = ` `1` `; i <= n; i++) { ` ` ` `for` `(` `int` `j = ` `1` `; j <= m; j++) { ` ` ` ` ` `// stores the maximum of lcs[i-1][j] and lcs[i][j-1] ` ` ` `lcs[i][j] = Math.max(lcs[i - ` `1` `][j], lcs[i][j - ` `1` `]); ` ` ` ` ` `// when both the characters are equal ` ` ` `// of s1 and s2 ` ` ` `if` `(s1.charAt(i - ` `1` `) == s2.charAt(j - ` `1` `)) ` ` ` `cnt[i][j] = cnt[i - ` `1` `][j - ` `1` `] + ` `1` `; ` ` ` ` ` `// when length of common segment is ` ` ` `// more than k, then update lcs answer ` ` ` `// by adding that segment to the answer ` ` ` `if` `(cnt[i][j] >= k) ` ` ` `{ ` ` ` ` ` `// formulate for all length of segments ` ` ` `// to get the longest subsequence with ` ` ` `// consecutive Common Segment of length ` ` ` `// of min k length ` ` ` `for` `(` `int` `a = k; a <= cnt[i][j]; a++) ` ` ` ` ` `// update lcs value by adding ` ` ` `// segment length ` ` ` `lcs[i][j] = Math.max(lcs[i][j], ` ` ` `lcs[i - a][j - a] + a); ` ` ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `return` `lcs[n][m]; ` ` ` `} ` ` ` ` ` `// driver code to check the above function ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `int` `k = ` `4` `; ` ` ` `String s1 = ` `"aggasdfa"` `; ` ` ` `String s2 = ` `"aggajasdfa"` `; ` ` ` `System.out.println(longestSubsequenceCommonSegment(k, s1, s2)); ` ` ` `} ` `} ` ` ` `// This code is contributed by prerna saini. ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program to find the Length of Longest ` `# subsequence formed by consecutive segments ` `# of at least length K ` ` ` `# Returns the length of the longest common subsequence ` `# with a minimum of length of K consecutive segments ` `def` `longestSubsequenceCommonSegment(k, s1, s2) : ` ` ` ` ` `# length of strings ` ` ` `n ` `=` `len` `(s1) ` ` ` `m ` `=` `len` `(s2) ` ` ` ` ` `# declare the lcs and cnt array ` ` ` `lcs ` `=` `[[` `0` `for` `x ` `in` `range` `(m ` `+` `1` `)] ` `for` `y ` `in` `range` `(n ` `+` `1` `)] ` ` ` `cnt ` `=` `[[` `0` `for` `x ` `in` `range` `(m ` `+` `1` `)] ` `for` `y ` `in` `range` `(n ` `+` `1` `)] ` ` ` ` ` ` ` `# iterate from i=1 to n and j=1 to j=m ` ` ` `for` `i ` `in` `range` `(` `1` `, n ` `+` `1` `) : ` ` ` `for` `j ` `in` `range` `(` `1` `, m ` `+` `1` `) : ` ` ` `# stores the maximum of lcs[i-1][j] and lcs[i][j-1] ` ` ` `lcs[i][j] ` `=` `max` `(lcs[i ` `-` `1` `][j], lcs[i][j ` `-` `1` `]) ` ` ` ` ` `# when both the characters are equal ` ` ` `# of s1 and s2 ` ` ` `if` `(s1[i ` `-` `1` `] ` `=` `=` `s2[j ` `-` `1` `]): ` ` ` `cnt[i][j] ` `=` `cnt[i ` `-` `1` `][j ` `-` `1` `] ` `+` `1` `; ` ` ` ` ` `# when length of common segment is ` ` ` `# more than k, then update lcs answer ` ` ` `# by adding that segment to the answer ` ` ` `if` `(cnt[i][j] >` `=` `k) : ` ` ` ` ` `# formulate for all length of segments ` ` ` `# to get the longest subsequence with ` ` ` `# consecutive Common Segment of length ` ` ` `# of min k length ` ` ` `for` `a ` `in` `range` `(k, cnt[i][j] ` `+` `1` `) : ` ` ` ` ` `# update lcs value by adding ` ` ` `# segment length ` ` ` `lcs[i][j] ` `=` `max` `(lcs[i][j],lcs[i ` `-` `a][j ` `-` `a] ` `+` `a) ` ` ` ` ` `return` `lcs[n][m] ` ` ` ` ` `# Driver code ` `k ` `=` `4` `s1 ` `=` `"aggasdfa"` `s2 ` `=` `"aggajasdfa"` `print` `(longestSubsequenceCommonSegment(k, s1, s2)) ` ` ` `# This code is contributed by Nikita Tiwari. ` |

*chevron_right*

*filter_none*

## C#

`// C# program to find the Length of Longest ` `// subsequence formed by consecutive segments ` `// of at least length K ` `using` `System; ` ` ` `class` `GFG { ` ` ` ` ` `// Returns the length of the longest common subsequence ` ` ` `// with a minimum of length of K consecutive segments ` ` ` `static` `int` `longestSubsequenceCommonSegment(` `int` `k, ` `string` `s1, ` ` ` `string` `s2) ` ` ` `{ ` ` ` `// length of strings ` ` ` `int` `n = s1.Length; ` ` ` `int` `m = s2.Length; ` ` ` ` ` `// declare the lcs and cnt array ` ` ` `int` `[,]lcs = ` `new` `int` `[n + 1,m + 1]; ` ` ` `int` `[,]cnt = ` `new` `int` `[n + 1,m + 1]; ` ` ` ` ` ` ` `// iterate from i=1 to n and j=1 to j=m ` ` ` `for` `(` `int` `i = 1; i <= n; i++) { ` ` ` `for` `(` `int` `j = 1; j <= m; j++) { ` ` ` ` ` `// stores the maximum of lcs[i-1][j] and lcs[i][j-1] ` ` ` `lcs[i,j] = Math.Max(lcs[i - 1,j], lcs[i,j - 1]); ` ` ` ` ` `// when both the characters are equal ` ` ` `// of s1 and s2 ` ` ` `if` `(s1[i - 1] == s2[j - 1]) ` ` ` `cnt[i,j] = cnt[i - 1,j - 1] + 1; ` ` ` ` ` `// when length of common segment is ` ` ` `// more than k, then update lcs answer ` ` ` `// by adding that segment to the answer ` ` ` `if` `(cnt[i,j] >= k) ` ` ` `{ ` ` ` ` ` `// formulate for all length of segments ` ` ` `// to get the longest subsequence with ` ` ` `// consecutive Common Segment of length ` ` ` `// of min k length ` ` ` `for` `(` `int` `a = k; a <= cnt[i,j]; a++) ` ` ` ` ` `// update lcs value by adding ` ` ` `// segment length ` ` ` `lcs[i,j] = Math.Max(lcs[i,j], ` ` ` `lcs[i - a,j - a] + a); ` ` ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `return` `lcs[n,m]; ` ` ` `} ` ` ` ` ` `// driver code to check the above function ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `int` `k = 4; ` ` ` `string` `s1 = ` `"aggasdfa"` `; ` ` ` `string` `s2 = ` `"aggajasdfa"` `; ` ` ` `Console.WriteLine(longestSubsequenceCommonSegment(k, s1, s2)); ` ` ` `} ` `} ` ` ` `// This code is contributed by vt_m. ` |

*chevron_right*

*filter_none*

**Output:**

8

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Count ways to increase LCS length of two strings by one
- Find the number of binary strings of length N with at least 3 consecutive 1s
- A Space Optimized Solution of LCS
- Longest Common Increasing Subsequence (LCS + LIS)
- LCS (Longest Common Subsequence) of three strings
- Number of ways to insert a character to increase the LCS by one
- Edit distance and LCS (Longest Common Subsequence)
- Maximum length of segments of 0's and 1's
- Minimum sum subsequence such that at least one of every four consecutive elements is picked
- Minimum bit flips such that every K consecutive bits contain at least one set bit
- Strings formed from given characters without any consecutive repeating characters
- Generate a Binary String without any consecutive 0's and at most K consecutive 1's
- Convert a number of length N such that it contains any one digit at least 'K' times
- Find two equal subsequences of maximum length with at least one different index
- Count of binary strings of given length consisting of at least one 1
- Minimize length of Substrings containing at least one common Character
- Check if a large number can be divided into two or more segments of equal sum
- Maximum number of segments of lengths a, b and c
- Partition the array in K segments such that bitwise AND of individual segment sum is maximized
- Divide the array in K segments such that the sum of minimums is maximized

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.