Skip to content
Related Articles

Related Articles

LCA in a tree using Binary Lifting Technique
  • Difficulty Level : Hard
  • Last Updated : 11 Aug, 2020

Given a binary tree, the task is to find the Lowest Common Ancestor of the given two nodes in the tree. 
Let G be a tree then LCA of two nodes u and v is defined as the node w in the tree which is an ancestor of both u and v and is farthest from the root node.If one node is the ancestor of another one than that particular node is the LCA of those two nodes.
Example: 

Input: 

Output: 
The LCA of 6 and 9 is 1. 
The LCA of 5 and 9 is 1. 
The LCA of 6 and 8 is 3. 
The LCA of 6 and 1 is 1. 
 

Approach: The article describes an approach known as Binary Lifting to find the Lowest Common Ancestor of two nodes in a tree. There can be many approaches to solve the LCA problem. We are discussing the Binary Lifting Technique, the others can be read from here and here
Binary Lifting is a dynamic programming approach where we pre-compute an array memo[1, n][1, log(n)] where memo[i][j] contains 2^j-th ancestor of node i. For computing the values of memo[][], the following recursion may be used 



memo[i][j] = parent[i] if j = 0 and 
memo[i][j] = memo[memo[i][j – 1]][j – 1] if j > 0. 

We first check whether a node is an ancestor of other or not and if one node is ancestor of other then it is the LCA of these two nodes otherwise we find a node which is not the common ancestor of both u and v and is highest(i.e. a node x such that x is not the common ancestor of u and v but memo[x][0] is) in the tree. After finding such a node (let it be x), we print the first ancestor of x i.e. memo[x][0] which will be the required LCA.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach 
#include <bits/stdc++.h> 
using namespace std; 
  
// Pre-processing to calculate values of memo[][] 
void dfs(int u, int p, int **memo, int *lev, int log, vector<int> *g) 
    // Using recursion formula to calculate 
    // the values of memo[][] 
    memo[u][0] = p; 
    for (int i = 1; i <= log; i++) 
        memo[u][i] = memo[memo[u][i - 1]][i - 1]; 
    for (int v : g[u]) 
    
        if (v != p) 
        
            lev[v] = lev[u] + 1; 
            dfs(v, u, memo, lev, log, g); 
        
    
  
// Function to return the LCA of nodes u and v 
int lca(int u, int v, int log, int *lev, int **memo) 
    // The node which is present farthest 
    // from the root node is taken as u 
    // If v is farther from root node 
    // then swap the two 
    if (lev[u] < lev[v]) 
        swap(u, v); 
  
    // Finding the ancestor of u 
    // which is at same level as v 
    for (int i = log; i >= 0; i--) 
        if ((lev[u] - pow(2, i)) >= lev[v]) 
            u = memo[u][i]; 
  
    // If v is the ancestor of u 
    // then v is the LCA of u and v 
    if (u == v) 
        return u; 
  
    // Finding the node closest to the root which is 
    // not the common ancestor of u and v i.e. a node 
    // x such that x is not the common ancestor of u 
    // and v but memo[x][0] is 
    for (int i = log; i >= 0; i--) 
    
        if (memo[u][i] != memo[v][i]) 
        
            u = memo[u][i]; 
            v = memo[v][i]; 
        
    
  
    // Returning the first ancestor 
    // of above found node 
    return memo[u][0]; 
  
// Driver Code 
int main() 
    // Number of nodes 
    int n = 9; 
  
    // vector to store tree 
    vector<int> g[n + 1]; 
  
    int log = (int)ceil(log2(n)); 
    int **memo = new int *[n + 1]; 
    for (int i = 0; i < n + 1; i++) 
        memo[i] = new int[log + 1]; 
  
    // Stores the level of each node 
    int *lev = new int[n + 1]; 
  
    // Initialising memo values with -1 
    for (int i = 0; i <= n; i++) 
        memset(memo[i], -1, sizeof memo[i]); 
  
    // Add edges 
    g[1].push_back(2); 
    g[2].push_back(1); 
    g[1].push_back(3); 
    g[3].push_back(1); 
    g[1].push_back(4); 
    g[4].push_back(1); 
    g[2].push_back(5); 
    g[5].push_back(2); 
    g[3].push_back(6); 
    g[6].push_back(3); 
    g[3].push_back(7); 
    g[7].push_back(3); 
    g[3].push_back(8); 
    g[8].push_back(3); 
    g[4].push_back(9); 
    g[9].push_back(4); 
    dfs(1, 1, memo, lev, log, g); 
    cout << "The LCA of 6 and 9 is " << lca(6, 9, log, lev, memo) << endl; 
    cout << "The LCA of 5 and 9 is " << lca(5, 9, log, lev, memo) << endl; 
    cout << "The LCA of 6 and 8 is " << lca(6, 8, log, lev, memo) << endl; 
    cout << "The LCA of 6 and 1 is " << lca(6, 1, log, lev, memo) << endl; 
  
    return 0; 
  
// This code is contributed by 
// sanjeev2552 

Java




// Java implementation of the approach 
import java.util.*; 
public class GFG { 
  
    // ArrayList to store tree 
    static ArrayList<Integer> g[]; 
    static int memo[][], lev[], log; 
  
    // Pre-processing to calculate values of memo[][] 
    static void dfs(int u, int p) 
    
  
        // Using recursion formula to calculate 
        // the values of memo[][] 
        memo[u][0] = p; 
        for (int i = 1; i <= log; i++) 
            memo[u][i] = memo[memo[u][i - 1]][i - 1]; 
        for (int v : g[u]) { 
            if (v != p) { 
  
                // Calculating the level of each node 
                lev[v] = lev[u] + 1
                dfs(v, u); 
            
        
    
  
    // Function to return the LCA of nodes u and v 
    static int lca(int u, int v) 
    
        // The node which is present farthest 
        // from the root node is taken as u 
        // If v is farther from root node 
        // then swap the two 
        if (lev[u] < lev[v]) { 
            int temp = u; 
            u = v; 
            v = temp; 
        
  
        // Finding the ancestor of u 
        // which is at same level as v 
        for (int i = log; i >= 0; i--) { 
            if ((lev[u] - (int)Math.pow(2, i)) >= lev[v]) 
                u = memo[u][i]; 
        
  
        // If v is the ancestor of u 
        // then v is the LCA of u and v 
        if (u == v) 
            return u; 
  
        // Finding the node closest to the root which is 
        // not the common ancestor of u and v i.e. a node 
        // x such that x is not the common ancestor of u 
        // and v but memo[x][0] is 
        for (int i = log; i >= 0; i--) { 
            if (memo[u][i] != memo[v][i]) { 
                u = memo[u][i]; 
                v = memo[v][i]; 
            
        
  
        // Returning the first ancestor 
        // of above found node 
        return memo[u][0]; 
    
  
    // Driver code 
    public static void main(String args[]) 
    
  
        // Number of nodes 
        int n = 9
        g = new ArrayList[n + 1]; 
  
        // log(n) with base 2 
        log = (int)Math.ceil(Math.log(n) / Math.log(2)); 
        memo = new int[n + 1][log + 1]; 
  
        // Stores the level of each node 
        lev = new int[n + 1]; 
  
        // Initialising memo values with -1 
        for (int i = 0; i <= n; i++) 
            Arrays.fill(memo[i], -1); 
        for (int i = 0; i <= n; i++) 
            g[i] = new ArrayList<>(); 
  
        // Add edges 
        g[1].add(2); 
        g[2].add(1); 
        g[1].add(3); 
        g[3].add(1); 
        g[1].add(4); 
        g[4].add(1); 
        g[2].add(5); 
        g[5].add(2); 
        g[3].add(6); 
        g[6].add(3); 
        g[3].add(7); 
        g[7].add(3); 
        g[3].add(8); 
        g[8].add(3); 
        g[4].add(9); 
        g[9].add(4); 
        dfs(1, 1); 
        System.out.println("The LCA of 6 and 9 is " + lca(6, 9)); 
        System.out.println("The LCA of 5 and 9 is " + lca(5, 9)); 
        System.out.println("The LCA of 6 and 8 is " + lca(6, 8)); 
        System.out.println("The LCA of 6 and 1 is " + lca(6, 1)); 
    

Python3




# Python3 implementation of the above approach 
import math
  
# Pre-processing to calculate values of memo[][]
def dfs(u, p, memo, lev, log, g):
      
    # Using recursion formula to calculate 
    # the values of memo[][] 
    memo[u][0] = p
    for i in range(1, log + 1):
        memo[u][i] = memo[memo[u][i - 1]][i - 1]
          
    for v in g[u]:
        if v != p:
            lev[v] = lev[u] + 1
            dfs(v, u, memo, lev, log, g)
  
# Function to return the LCA of nodes u and v 
def lca(u, v, log, lev, memo):
      
    # The node which is present farthest 
    # from the root node is taken as u 
    # If v is farther from root node 
    # then swap the two 
    if lev[u] < lev[v]:
        swap(u, v)
          
    # Finding the ancestor of u 
    # which is at same level as v 
    for i in range(log, -1, -1):
        if (lev[u] - pow(2, i)) >= lev[v]:
            u = memo[u][i]
              
    # If v is the ancestor of u 
    # then v is the LCA of u and v         
    if u == v:
        return v
          
    # Finding the node closest to the 
    # root which is not the common ancestor
    # of u and v i.e. a node x such that x
    # is not the common ancestor of u 
    # and v but memo[x][0] is 
    for i in range(log, -1, -1):
        if memo[u][i] != memo[v][i]:
            u = memo[u][i]
            v = memo[v][i]
      
    # Returning the first ancestor 
    # of above found node         
    return memo[u][0]
  
# Driver code 
  
# Number of nodes 
n = 9
  
log = math.ceil(math.log(n, 2))
g = [[] for i in range(n + 1)]
  
memo = [[-1 for i in range(log + 1)] 
            for j in range(n + 1)]
  
# Stores the level of each node             
lev = [0 for i in range(n + 1)]
  
# Add edges 
g[1].append(2)
g[2].append(1)
g[1].append(3)
g[3].append(1)
g[1].append(4)
g[4].append(1)
g[2].append(5)
g[5].append(2)
g[3].append(6)
g[6].append(3)
g[3].append(7)
g[7].append(3)
g[3].append(8)
g[8].append(3)
g[4].append(9)
g[9].append(4)
  
dfs(1, 1, memo, lev, log, g)
  
print("The LCA of 6 and 9 is", lca(6, 9, log, lev, memo))
print("The LCA of 5 and 9 is", lca(5, 9, log, lev, memo))
print("The LCA of 6 and 8 is", lca(6, 8, log, lev, memo))
print("The LCA of 6 and 1 is", lca(6, 1, log, lev, memo))
  
# This code is contributed by Bhaskar

C#




// C# implementation of the approach 
using System; 
using System.Collections.Generic; 
  
class GFG 
  
    // List to store tree 
    static List<int> []g; 
    static int [,]memo; 
    static int []lev; 
    static int log; 
  
    // Pre-processing to calculate 
    // values of memo[,] 
    static void dfs(int u, int p) 
    
  
        // Using recursion formula to 
        // calculate the values of memo[,] 
        memo[u, 0] = p; 
        for (int i = 1; i <= log; i++) 
            memo[u, i] = memo[memo[u, i - 1], 
                                    i - 1]; 
        foreach (int v in g[u]) 
        
            if (v != p) 
            
  
                // Calculating the level of each node 
                lev[v] = lev[u] + 1; 
                dfs(v, u); 
            
        
    
  
    // Function to return the LCA of 
    // nodes u and v 
    static int lca(int u, int v) 
    
        // The node which is present farthest 
        // from the root node is taken as u 
        // If v is farther from root node 
        // then swap the two 
        if (lev[u] < lev[v]) 
        
            int temp = u; 
            u = v; 
            v = temp; 
        
  
        // Finding the ancestor of u 
        // which is at same level as v 
        for (int i = log; i >= 0; i--) 
        
            if ((lev[u] - (int)Math.Pow(2, i)) >= lev[v]) 
                u = memo[u, i]; 
        
  
        // If v is the ancestor of u 
        // then v is the LCA of u and v 
        if (u == v) 
            return u; 
  
        // Finding the node closest to the root 
        // which is not the common ancestor of 
        // u and v i.e. a node x such that 
        // x is not the common ancestor of u 
        // and v but memo[x,0] is 
        for (int i = log; i >= 0; i--) 
        
            if (memo[u, i] != memo[v, i]) 
            
                u = memo[u, i]; 
                v = memo[v, i]; 
            
        
  
        // Returning the first ancestor 
        // of above found node 
        return memo[u, 0]; 
    
  
    // Driver code 
    public static void Main(String []args) 
    
  
        // Number of nodes 
        int n = 9; 
        g = new List<int>[n + 1]; 
  
        // log(n) with base 2 
        log = (int)Math.Ceiling(Math.Log(n) / Math.Log(2)); 
        memo = new int[n + 1, log + 1]; 
  
        // Stores the level of each node 
        lev = new int[n + 1]; 
  
        // Initialising memo values with -1 
        for (int i = 0; i <= n; i++) 
            for (int j = 0; j <= log; j++) 
                memo[i, j] = -1; 
        for (int i = 0; i <= n; i++) 
            g[i] = new List<int>(); 
  
        // Add edges 
        g[1].Add(2); 
        g[2].Add(1); 
        g[1].Add(3); 
        g[3].Add(1); 
        g[1].Add(4); 
        g[4].Add(1); 
        g[2].Add(5); 
        g[5].Add(2); 
        g[3].Add(6); 
        g[6].Add(3); 
        g[3].Add(7); 
        g[7].Add(3); 
        g[3].Add(8); 
        g[8].Add(3); 
        g[4].Add(9); 
        g[9].Add(4); 
        dfs(1, 1); 
        Console.WriteLine("The LCA of 6 and 9 is "
                                        lca(6, 9)); 
        Console.WriteLine("The LCA of 5 and 9 is "
                                        lca(5, 9)); 
        Console.WriteLine("The LCA of 6 and 8 is "
                                        lca(6, 8)); 
        Console.WriteLine("The LCA of 6 and 1 is "
                                        lca(6, 1)); 
    
  
// This code is contributed by PrinciRaj1992 
Output: 
The LCA of 6 and 9 is 1
The LCA of 5 and 9 is 1
The LCA of 6 and 8 is 3
The LCA of 6 and 1 is 1

Time Complexity: The time taken in pre-processing is O(NlogN) and every query takes O(logN) time. So the overall time complexity of the solution is O(NlogN).
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :