# Lazy Propagation in Segment Tree | Set 2

Given an array arr[] of size N. There are two types of operations:

1. Update(l, r, x) : Increment the a[i] (l <= i <= r) with value x.
2. Query(l, r) : Find the maximum value in the array in a range l to r (both are included).

Examples:

Input: arr[] = {1, 2, 3, 4, 5}
Update(0, 3, 4)
Query(1, 4)
Output: 8
After applying the update operation
in the given range with given value array becomes {5, 6, 7, 8, 5}.
Then the maximum value in the range 1 to 4 is 8.

Input: arr[] = {1, 2, 3, 4, 5}
Update(0, 0, 10)
Query(0, 4)
Output: 11

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: A detailed explanation about the lazy propagation in the segment tree is explained previously. The only thing that needed to change in the question is to return a maximum value between two child nodes when the parent node query is called. See the code for better understanding.

Below is the implementation of the above approach:

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` `#define MAX 1000 ` ` `  `// Ideally, we should not use global variables and large ` `// constant-sized arrays, we have done it here for simplicity ` ` `  `// To store segment tree ` `int` `tree[MAX] = { 0 }; ` ` `  `// To store pending updates ` `int` `lazy[MAX] = { 0 }; ` ` `  `// si -> index of current node in segment tree ` `// ss and se -> Starting and ending indexes of ` `// elements for which current nodes stores sum ` `// us and ue -> starting and ending indexes of update query ` `// diff -> which we need to add in the range us to ue ` `void` `updateRangeUtil(``int` `si, ``int` `ss, ``int` `se, ``int` `us, ` `                     ``int` `ue, ``int` `diff) ` `{ ` `    ``// If lazy value is non-zero for current node of segment ` `    ``// tree, then there are some pending updates. So we need ` `    ``// to make sure that the pending updates are done before ` `    ``// making new updates. Because this value may be used by ` `    ``// parent after recursive calls (See last line of this ` `    ``// function) ` `    ``if` `(lazy[si] != 0) { ` `        ``// Make pending updates using value stored in lazy ` `        ``// nodes ` `        ``tree[si] += lazy[si]; ` ` `  `        ``// Checking if it is not leaf node because if ` `        ``// it is leaf node then we cannot go further ` `        ``if` `(ss != se) { ` `            ``// We can postpone updating children we don't ` `            ``// need their new values now. ` `            ``// Since we are not yet updating children of si, ` `            ``// we need to set lazy flags for the children ` `            ``lazy[si * 2 + 1] += lazy[si]; ` `            ``lazy[si * 2 + 2] += lazy[si]; ` `        ``} ` ` `  `        ``// Set the lazy value for current node as 0 as it ` `        ``// has been updated ` `        ``lazy[si] = 0; ` `    ``} ` ` `  `    ``// Out of range ` `    ``if` `(ss > se || ss > ue || se < us) ` `        ``return``; ` ` `  `    ``// Current segment is fully in range ` `    ``if` `(ss >= us && se <= ue) { ` `        ``// Add the difference to current node ` `        ``tree[si] += diff; ` ` `  `        ``// Same logic for checking leaf node or not ` `        ``if` `(ss != se) { ` `            ``// This is where we store values in lazy nodes, ` `            ``// rather than updating the segment tree itelf ` `            ``// Since we don't need these updated values now ` `            ``// we postpone updates by storing values in lazy[] ` `            ``lazy[si * 2 + 1] += diff; ` `            ``lazy[si * 2 + 2] += diff; ` `        ``} ` `        ``return``; ` `    ``} ` ` `  `    ``// If not completely in range, but overlaps ` `    ``// recur for children ` `    ``int` `mid = (ss + se) / 2; ` `    ``updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff); ` `    ``updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff); ` ` `  `    ``// And use the result of children calls ` `    ``// to update this node ` `    ``tree[si] = max(tree[si * 2 + 1], tree[si * 2 + 2]); ` `} ` ` `  `// Function to update a range of values in segment ` `// tree ` `// us and eu -> starting and ending indexes of update query ` `// ue -> ending index of update query ` `// diff -> which we need to add in the range us to ue ` `void` `updateRange(``int` `n, ``int` `us, ``int` `ue, ``int` `diff) ` `{ ` `    ``updateRangeUtil(0, 0, n - 1, us, ue, diff); ` `} ` ` `  `// A recursive function to get the sum of values in given ` `// a range of the array. The following are the parameters ` `// for this function ` `// si --> Index of the current node in the segment tree ` `// Initially, 0 is passed as root is always at index 0 ` `// ss & se --> Starting and ending indexes of the ` `// segment represented by current node ` `// i.e., tree[si] ` `// qs & qe --> Starting and ending indexes of query ` `// range ` `int` `getSumUtil(``int` `ss, ``int` `se, ``int` `qs, ``int` `qe, ``int` `si) ` `{ ` ` `  `    ``// If lazy flag is set for current node of segment tree ` `    ``// then there are some pending updates. So we need to ` `    ``// make sure that the pending updates are done before ` `    ``// processing the sub sum query ` `    ``if` `(lazy[si] != 0) { ` ` `  `        ``// Make pending updates to this node. Note that this ` `        ``// node represents sum of elements in arr[ss..se] and ` `        ``// all these elements must be increased by lazy[si] ` `        ``tree[si] += lazy[si]; ` ` `  `        ``// Checking if it is not leaf node because if ` `        ``// it is leaf node then we cannot go further ` `        ``if` `(ss != se) { ` `            ``// Since we are not yet updating children os si, ` `            ``// we need to set lazy values for the children ` `            ``lazy[si * 2 + 1] += lazy[si]; ` `            ``lazy[si * 2 + 2] += lazy[si]; ` `        ``} ` ` `  `        ``// Unset the lazy value for current node as it has ` `        ``// been updated ` `        ``lazy[si] = 0; ` `    ``} ` ` `  `    ``// Out of range ` `    ``if` `(ss > se || ss > qe || se < qs) ` `        ``return` `0; ` ` `  `    ``// At this point, we are sure that pending lazy updates ` `    ``// are done for current node. So we can return value ` `    ``// (same as it was for a query in our previous post) ` ` `  `    ``// If this segment lies in range ` `    ``if` `(ss >= qs && se <= qe) ` `        ``return` `tree[si]; ` ` `  `    ``// If a part of this segment overlaps with the given ` `    ``// range ` `    ``int` `mid = (ss + se) / 2; ` `    ``return` `max(getSumUtil(ss, mid, qs, qe, 2 * si + 1), ` `               ``getSumUtil(mid + 1, se, qs, qe, 2 * si + 2)); ` `} ` ` `  `// Return sum of elements in range from index qs (quey ` `// start) to qe (query end). It mainly uses getSumUtil() ` `int` `getSum(``int` `n, ``int` `qs, ``int` `qe) ` `{ ` `    ``// Check for erroneous input values ` `    ``if` `(qs < 0 || qe > n - 1 || qs > qe) { ` `        ``printf``(``"Invalid Input"``); ` `        ``return` `-1; ` `    ``} ` ` `  `    ``return` `getSumUtil(0, n - 1, qs, qe, 0); ` `} ` ` `  `// A recursive function that constructs Segment Tree for ` `// array[ss..se]. si is index of current node in segment ` `// tree st. ` `void` `constructSTUtil(``int` `arr[], ``int` `ss, ``int` `se, ``int` `si) ` `{ ` `    ``// out of range as ss can never be greater than se ` `    ``if` `(ss > se) ` `        ``return``; ` ` `  `    ``// If there is one element in array, store it in ` `    ``// current node of segment tree and return ` `    ``if` `(ss == se) { ` `        ``tree[si] = arr[ss]; ` `        ``return``; ` `    ``} ` ` `  `    ``// If there are more than one elements, then recur ` `    ``// for left and right subtrees and store the sum ` `    ``// of values in this node ` `    ``int` `mid = (ss + se) / 2; ` `    ``constructSTUtil(arr, ss, mid, si * 2 + 1); ` `    ``constructSTUtil(arr, mid + 1, se, si * 2 + 2); ` ` `  `    ``tree[si] = max(tree[si * 2 + 1], tree[si * 2 + 2]); ` `} ` ` `  `// Function to construct a segment tree from a given array ` `// This function allocates memory for segment tree and ` `// calls constructSTUtil() to fill the allocated memory ` `void` `constructST(``int` `arr[], ``int` `n) ` `{ ` `    ``// Fill the allocated memory st ` `    ``constructSTUtil(arr, 0, n - 1, 0); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 2, 3, 4, 5 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]); ` ` `  `    ``// Build segment tree from given array ` `    ``constructST(arr, n); ` ` `  `    ``// Add 4 to all nodes in index range [0, 3] ` `    ``updateRange(n, 0, 3, 4); ` ` `  `    ``// Print maximum element in index range [1, 4] ` `    ``cout << getSum(n, 1, 4); ` ` `  `    ``return` `0; ` `} `

 `// Java implementation of the approach ` ` `  `class` `GFG  ` `{ ` `     `  `static` `int` `MAX =``1000``; ` ` `  `// Ideally, we should not use global variables and large ` `// constant-sized arrays, we have done it here for simplicity ` ` `  `// To store segment tree ` `static` `int` `tree[] = ``new` `int``[MAX]; ` ` `  `// To store pending updates ` `static` `int` `lazy[] = ``new` `int``[MAX]; ` ` `  `// si -> index of current node in segment tree ` `// ss and se -> Starting and ending indexes of ` `// elements for which current nodes stores sum ` `// us and ue -> starting and ending indexes of update query ` `// diff -> which we need to add in the range us to ue ` `static` `void` `updateRangeUtil(``int` `si, ``int` `ss, ``int` `se, ``int` `us, ` `                    ``int` `ue, ``int` `diff) ` `{ ` `    ``// If lazy value is non-zero for current node of segment ` `    ``// tree, then there are some pending updates. So we need ` `    ``// to make sure that the pending updates are done before ` `    ``// making new updates. Because this value may be used by ` `    ``// parent after recursive calls (See last line of this ` `    ``// function) ` `    ``if` `(lazy[si] != ``0``) ` `    ``{ ` `        ``// Make pending updates using value stored in lazy ` `        ``// nodes ` `        ``tree[si] += lazy[si]; ` ` `  `        ``// Checking if it is not leaf node because if ` `        ``// it is leaf node then we cannot go further ` `        ``if` `(ss != se) ` `        ``{ ` `            ``// We can postpone updating children we don't ` `            ``// need their new values now. ` `            ``// Since we are not yet updating children of si, ` `            ``// we need to set lazy flags for the children ` `            ``lazy[si * ``2` `+ ``1``] += lazy[si]; ` `            ``lazy[si * ``2` `+ ``2``] += lazy[si]; ` `        ``} ` ` `  `        ``// Set the lazy value for current node as 0 as it ` `        ``// has been updated ` `        ``lazy[si] = ``0``; ` `    ``} ` ` `  `    ``// Out of range ` `    ``if` `(ss > se || ss > ue || se < us) ` `        ``return``; ` ` `  `    ``// Current segment is fully in range ` `    ``if` `(ss >= us && se <= ue) ` `    ``{ ` `        ``// Add the difference to current node ` `        ``tree[si] += diff; ` ` `  `        ``// Same logic for checking leaf node or not ` `        ``if` `(ss != se) ` `        ``{ ` `            ``// This is where we store values in lazy nodes, ` `            ``// rather than updating the segment tree itelf ` `            ``// Since we don't need these updated values now ` `            ``// we postpone updates by storing values in lazy[] ` `            ``lazy[si * ``2` `+ ``1``] += diff; ` `            ``lazy[si * ``2` `+ ``2``] += diff; ` `        ``} ` `        ``return``; ` `    ``} ` ` `  `    ``// If not completely in range, but overlaps ` `    ``// recur for children ` `    ``int` `mid = (ss + se) / ``2``; ` `    ``updateRangeUtil(si * ``2` `+ ``1``, ss, mid, us, ue, diff); ` `    ``updateRangeUtil(si * ``2` `+ ``2``, mid + ``1``, se, us, ue, diff); ` ` `  `    ``// And use the result of children calls ` `    ``// to update this node ` `    ``tree[si] = Math.max(tree[si * ``2` `+ ``1``], tree[si * ``2` `+ ``2``]); ` `} ` ` `  `// Function to update a range of values in segment ` `// tree ` `// us and eu -> starting and ending indexes of update query ` `// ue -> ending index of update query ` `// diff -> which we need to add in the range us to ue ` `static` `void` `updateRange(``int` `n, ``int` `us, ``int` `ue, ``int` `diff) ` `{ ` `    ``updateRangeUtil(``0``, ``0``, n - ``1``, us, ue, diff); ` `} ` ` `  `// A recursive function to get the sum of values in given ` `// a range of the array. The following are the parameters ` `// for this function ` `// si --> Index of the current node in the segment tree ` `// Initially, 0 is passed as root is always at index 0 ` `// ss & se --> Starting and ending indexes of the ` `// segment represented by current node ` `// i.e., tree[si] ` `// qs & qe --> Starting and ending indexes of query ` `// range ` `static` `int` `getSumUtil(``int` `ss, ``int` `se, ``int` `qs, ``int` `qe, ``int` `si) ` `{ ` ` `  `    ``// If lazy flag is set for current node of segment tree ` `    ``// then there are some pending updates. So we need to ` `    ``// make sure that the pending updates are done before ` `    ``// processing the sub sum query ` `    ``if` `(lazy[si] != ``0``) ` `    ``{ ` ` `  `        ``// Make pending updates to this node. Note that this ` `        ``// node represents sum of elements in arr[ss..se] and ` `        ``// all these elements must be increased by lazy[si] ` `        ``tree[si] += lazy[si]; ` ` `  `        ``// Checking if it is not leaf node because if ` `        ``// it is leaf node then we cannot go further ` `        ``if` `(ss != se) ` `        ``{ ` `            ``// Since we are not yet updating children os si, ` `            ``// we need to set lazy values for the children ` `            ``lazy[si * ``2` `+ ``1``] += lazy[si]; ` `            ``lazy[si * ``2` `+ ``2``] += lazy[si]; ` `        ``} ` ` `  `        ``// Unset the lazy value for current node as it has ` `        ``// been updated ` `        ``lazy[si] = ``0``; ` `    ``} ` ` `  `    ``// Out of range ` `    ``if` `(ss > se || ss > qe || se < qs) ` `        ``return` `0``; ` ` `  `    ``// At this point, we are sure that pending lazy updates ` `    ``// are done for current node. So we can return value ` `    ``// (same as it was for a query in our previous post) ` ` `  `    ``// If this segment lies in range ` `    ``if` `(ss >= qs && se <= qe) ` `        ``return` `tree[si]; ` ` `  `    ``// If a part of this segment overlaps with the given ` `    ``// range ` `    ``int` `mid = (ss + se) / ``2``; ` `    ``return` `Math.max(getSumUtil(ss, mid, qs, qe, ``2` `* si + ``1``), ` `            ``getSumUtil(mid + ``1``, se, qs, qe, ``2` `* si + ``2``)); ` `} ` ` `  `// Return sum of elements in range from index qs (quey ` `// start) to qe (query end). It mainly uses getSumUtil() ` `static` `int` `getSum(``int` `n, ``int` `qs, ``int` `qe) ` `{ ` `    ``// Check for erroneous input values ` `    ``if` `(qs < ``0` `|| qe > n - ``1` `|| qs > qe) ` `    ``{ ` `        ``System.out.print(``"Invalid Input"``); ` `        ``return` `-``1``; ` `    ``} ` ` `  `    ``return` `getSumUtil(``0``, n - ``1``, qs, qe, ``0``); ` `} ` ` `  `// A recursive function that constructs Segment Tree for ` `// array[ss..se]. si is index of current node in segment ` `// tree st. ` `static` `void` `constructSTUtil(``int` `arr[], ``int` `ss, ``int` `se, ``int` `si) ` `{ ` `    ``// out of range as ss can never be greater than se ` `    ``if` `(ss > se) ` `        ``return``; ` ` `  `    ``// If there is one element in array, store it in ` `    ``// current node of segment tree and return ` `    ``if` `(ss == se)  ` `    ``{ ` `        ``tree[si] = arr[ss]; ` `        ``return``; ` `    ``} ` ` `  `    ``// If there are more than one elements, then recur ` `    ``// for left and right subtrees and store the sum ` `    ``// of values in this node ` `    ``int` `mid = (ss + se) / ``2``; ` `    ``constructSTUtil(arr, ss, mid, si * ``2` `+ ``1``); ` `    ``constructSTUtil(arr, mid + ``1``, se, si * ``2` `+ ``2``); ` ` `  `    ``tree[si] = Math.max(tree[si * ``2` `+ ``1``], tree[si * ``2` `+ ``2``]); ` `} ` ` `  `// Function to construct a segment tree from a given array ` `// This function allocates memory for segment tree and ` `// calls constructSTUtil() to fill the allocated memory ` `static` `void` `constructST(``int` `arr[], ``int` `n) ` `{ ` `    ``// Fill the allocated memory st ` `    ``constructSTUtil(arr, ``0``, n - ``1``, ``0``); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args)  ` `{ ` `    ``int` `arr[] = { ``1``, ``2``, ``3``, ``4``, ``5` `}; ` `    ``int` `n = arr.length; ` ` `  `    ``// Build segment tree from given array ` `    ``constructST(arr, n); ` ` `  `    ``// Add 4 to all nodes in index range [0, 3] ` `    ``updateRange(n, ``0``, ``3``, ``4``); ` ` `  `    ``// Print maximum element in index range [1, 4] ` `    ``System.out.println(getSum(n, ``1``, ``4``)); ` `} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

 `// C# implementation of the approach ` `using` `System;  ` ` `  `class` `GFG  ` `{ ` `      `  `static` `int` `MAX =1000; ` `  `  `// Ideally, we should not use global variables and large ` `// constant-sized arrays, we have done it here for simplicity ` `  `  `// To store segment tree ` `static` `int` `[]tree = ``new` `int``[MAX]; ` `  `  `// To store pending updates ` `static` `int` `[]lazy = ``new` `int``[MAX]; ` `  `  `// si -> index of current node in segment tree ` `// ss and se -> Starting and ending indexes of ` `// elements for which current nodes stores sum ` `// us and ue -> starting and ending indexes of update query ` `// diff -> which we need to add in the range us to ue ` `static` `void` `updateRangeUtil(``int` `si, ``int` `ss, ``int` `se, ``int` `us, ` `                    ``int` `ue, ``int` `diff) ` `{ ` `    ``// If lazy value is non-zero for current node of segment ` `    ``// tree, then there are some pending updates. So we need ` `    ``// to make sure that the pending updates are done before ` `    ``// making new updates. Because this value may be used by ` `    ``// parent after recursive calls (See last line of this ` `    ``// function) ` `    ``if` `(lazy[si] != 0) ` `    ``{ ` `        ``// Make pending updates using value stored in lazy ` `        ``// nodes ` `        ``tree[si] += lazy[si]; ` `  `  `        ``// Checking if it is not leaf node because if ` `        ``// it is leaf node then we cannot go further ` `        ``if` `(ss != se) ` `        ``{ ` `            ``// We can postpone updating children we don't ` `            ``// need their new values now. ` `            ``// Since we are not yet updating children of si, ` `            ``// we need to set lazy flags for the children ` `            ``lazy[si * 2 + 1] += lazy[si]; ` `            ``lazy[si * 2 + 2] += lazy[si]; ` `        ``} ` `  `  `        ``// Set the lazy value for current node as 0 as it ` `        ``// has been updated ` `        ``lazy[si] = 0; ` `    ``} ` `  `  `    ``// Out of range ` `    ``if` `(ss > se || ss > ue || se < us) ` `        ``return``; ` `  `  `    ``// Current segment is fully in range ` `    ``if` `(ss >= us && se <= ue) ` `    ``{ ` `        ``// Add the difference to current node ` `        ``tree[si] += diff; ` `  `  `        ``// Same logic for checking leaf node or not ` `        ``if` `(ss != se) ` `        ``{ ` `            ``// This is where we store values in lazy nodes, ` `            ``// rather than updating the segment tree itelf ` `            ``// Since we don't need these updated values now ` `            ``// we postpone updates by storing values in lazy[] ` `            ``lazy[si * 2 + 1] += diff; ` `            ``lazy[si * 2 + 2] += diff; ` `        ``} ` `        ``return``; ` `    ``} ` `  `  `    ``// If not completely in range, but overlaps ` `    ``// recur for children ` `    ``int` `mid = (ss + se) / 2; ` `    ``updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff); ` `    ``updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff); ` `  `  `    ``// And use the result of children calls ` `    ``// to update this node ` `    ``tree[si] = Math.Max(tree[si * 2 + 1], tree[si * 2 + 2]); ` `} ` `  `  `// Function to update a range of values in segment ` `// tree ` `// us and eu -> starting and ending indexes of update query ` `// ue -> ending index of update query ` `// diff -> which we need to add in the range us to ue ` `static` `void` `updateRange(``int` `n, ``int` `us, ``int` `ue, ``int` `diff) ` `{ ` `    ``updateRangeUtil(0, 0, n - 1, us, ue, diff); ` `} ` `  `  `// A recursive function to get the sum of values in given ` `// a range of the array. The following are the parameters ` `// for this function ` `// si --> Index of the current node in the segment tree ` `// Initially, 0 is passed as root is always at index 0 ` `// ss & se --> Starting and ending indexes of the ` `// segment represented by current node ` `// i.e., tree[si] ` `// qs & qe --> Starting and ending indexes of query ` `// range ` `static` `int` `getSumUtil(``int` `ss, ``int` `se, ``int` `qs, ``int` `qe, ``int` `si) ` `{ ` `  `  `    ``// If lazy flag is set for current node of segment tree ` `    ``// then there are some pending updates. So we need to ` `    ``// make sure that the pending updates are done before ` `    ``// processing the sub sum query ` `    ``if` `(lazy[si] != 0) ` `    ``{ ` `  `  `        ``// Make pending updates to this node. Note that this ` `        ``// node represents sum of elements in arr[ss..se] and ` `        ``// all these elements must be increased by lazy[si] ` `        ``tree[si] += lazy[si]; ` `  `  `        ``// Checking if it is not leaf node because if ` `        ``// it is leaf node then we cannot go further ` `        ``if` `(ss != se) ` `        ``{ ` `            ``// Since we are not yet updating children os si, ` `            ``// we need to set lazy values for the children ` `            ``lazy[si * 2 + 1] += lazy[si]; ` `            ``lazy[si * 2 + 2] += lazy[si]; ` `        ``} ` `  `  `        ``// Unset the lazy value for current node as it has ` `        ``// been updated ` `        ``lazy[si] = 0; ` `    ``} ` `  `  `    ``// Out of range ` `    ``if` `(ss > se || ss > qe || se < qs) ` `        ``return` `0; ` `  `  `    ``// At this point, we are sure that pending lazy updates ` `    ``// are done for current node. So we can return value ` `    ``// (same as it was for a query in our previous post) ` `  `  `    ``// If this segment lies in range ` `    ``if` `(ss >= qs && se <= qe) ` `        ``return` `tree[si]; ` `  `  `    ``// If a part of this segment overlaps with the given ` `    ``// range ` `    ``int` `mid = (ss + se) / 2; ` `    ``return` `Math.Max(getSumUtil(ss, mid, qs, qe, 2 * si + 1), ` `            ``getSumUtil(mid + 1, se, qs, qe, 2 * si + 2)); ` `} ` `  `  `// Return sum of elements in range from index qs (quey ` `// start) to qe (query end). It mainly uses getSumUtil() ` `static` `int` `getSum(``int` `n, ``int` `qs, ``int` `qe) ` `{ ` `    ``// Check for erroneous input values ` `    ``if` `(qs < 0 || qe > n - 1 || qs > qe) ` `    ``{ ` `        ``Console.Write(``"Invalid Input"``); ` `        ``return` `-1; ` `    ``} ` `  `  `    ``return` `getSumUtil(0, n - 1, qs, qe, 0); ` `} ` `  `  `// A recursive function that constructs Segment Tree for ` `// array[ss..se]. si is index of current node in segment ` `// tree st. ` `static` `void` `constructSTUtil(``int` `[]arr, ``int` `ss, ``int` `se, ``int` `si) ` `{ ` `    ``// out of range as ss can never be greater than se ` `    ``if` `(ss > se) ` `        ``return``; ` `  `  `    ``// If there is one element in array, store it in ` `    ``// current node of segment tree and return ` `    ``if` `(ss == se)  ` `    ``{ ` `        ``tree[si] = arr[ss]; ` `        ``return``; ` `    ``} ` `  `  `    ``// If there are more than one elements, then recur ` `    ``// for left and right subtrees and store the sum ` `    ``// of values in this node ` `    ``int` `mid = (ss + se) / 2; ` `    ``constructSTUtil(arr, ss, mid, si * 2 + 1); ` `    ``constructSTUtil(arr, mid + 1, se, si * 2 + 2); ` `  `  `    ``tree[si] = Math.Max(tree[si * 2 + 1], tree[si * 2 + 2]); ` `} ` `  `  `// Function to construct a segment tree from a given array ` `// This function allocates memory for segment tree and ` `// calls constructSTUtil() to fill the allocated memory ` `static` `void` `constructST(``int` `[]arr, ``int` `n) ` `{ ` `    ``// Fill the allocated memory st ` `    ``constructSTUtil(arr, 0, n - 1, 0); ` `} ` `  `  `// Driver code ` `public` `static` `void` `Main(String[] args)  ` `{ ` `    ``int` `[]arr = { 1, 2, 3, 4, 5 }; ` `    ``int` `n = arr.Length; ` `  `  `    ``// Build segment tree from given array ` `    ``constructST(arr, n); ` `  `  `    ``// Add 4 to all nodes in index range [0, 3] ` `    ``updateRange(n, 0, 3, 4); ` `  `  `    ``// Print maximum element in index range [1, 4] ` `    ``Console.WriteLine(getSum(n, 1, 4)); ` `} ` `} ` `// This code has been contributed by 29AjayKumar `

Output:
```8
```

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : princiraj1992, 29AjayKumar