Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Largest value of K such that both K and -K exist in Array in given index range [L, R]

  • Last Updated : 30 Nov, 2021

Given an array, arr[] of N integers and 2 integers L and R, the task is to return the largest integer K greater than 0 and L<=K<=R, such that both values K and -K exist in array arr[]. If there is no such integer, then return 0

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 5, arr[] = {3, 2, -2, 5, -3},  L = 2, R = 3
Output: 3
Explanation: The largest value of K in the range [2, 3] such that both K and -K exist in the array is 3 as 3 is present at arr[0] and -3 is present at arr[4].



Input: N = 4, arr[] = {1, 2, 3, -4},  L = 1, R = 4
Output: 0

 

Approach: The idea is to traverse the array and add the element into the Set and simultaneously check for the negative of it i.e, arr[i]*-1 into the Set. If it is found then push it into the vector possible[]. Follow the steps below to solve the problem:

  • Initialize an unordered_set<int> s[] to store the elements.
  • Initialize a vector possible[] to store the possible answers.
  • Iterate over the range [0, N) using the variable i and perform the following steps:
  • Initialize a variable ans as 0 to store the answer.
  • Iterate over the range [0, size) where size is the size of the vector possible[], using the variable i and perform the following steps:
    • If possible[i] is greater than equal to L and less than equal to R, then update the value of ans as the max of ans or possible[i].
  • After performing the above steps, print the value of ans as the answer.

Below is the implementation of the above approach.

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum value of K
int findMax(int N, int arr[], int L, int R)
{
 
    // Using a set to store the elements
    unordered_set<int> s;
 
    // Vector to store the possible answers
    vector<int> possible;
 
    // Store the answer
    int ans = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // If set has it's negation,
        // check if it is max
        if (s.find(arr[i] * -1) != s.end())
            possible.push_back(abs(arr[i]));
        else
            s.insert(arr[i]);
    }
 
    // Find the maximum possible answer
    for (int i = 0; i < possible.size(); i++) {
        if (possible[i] >= L and possible[i] <= R)
            ans = max(ans, possible[i]);
    }
 
    return ans;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 3, 2, -2, 5, -3 },
        N = 5, L = 2, R = 3;
 
    int max = findMax(N, arr, L, R);
 
    // Display the output
    cout << max << endl;
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
public class GFG
{
   
// Function to find the maximum value of K
static int findMax(int N, int []arr, int L, int R)
{
 
    // Using a set to store the elements
    HashSet<Integer> s = new HashSet<Integer>();
   
    // ArrayList to store the possible answers
    ArrayList<Integer> possible
            = new ArrayList<Integer>();
 
    // Store the answer
    int ans = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // If set has it's negation,
        // check if it is max
        if (s.contains(arr[i] * -1))
            possible.add(Math.abs(arr[i]));
        else
            s.add(arr[i]);
    }
 
    // Find the maximum possible answer
    for (int i = 0; i < possible.size(); i++) {
        if (possible.get(i) >= L && possible.get(i) <= R) {
            ans = Math.max(ans, possible.get(i));
        }
    }
 
    return ans;
}
 
// Driver Code
public static void main(String args[])
{
 
    int []arr = { 3, 2, -2, 5, -3 };
    int N = 5, L = 2, R = 3;
 
    int max = findMax(N, arr, L, R);
 
    // Display the output
    System.out.println(max);
 
}
}
 
// This code is contributed by Samim Hossain Mondal.

Python3




# Python3 program for the above approach
 
# Function to find the maximum value of K
def findMax(N, arr, L, R) :
 
    # Using a set to store the elements
    s = set();
 
    # Vector to store the possible answers
    possible = [];
 
    # Store the answer
    ans = 0;
 
    # Traverse the array
    for i in range(N) :
 
        # If set has it's negation,
        # check if it is max
        if arr[i] * -1 in s  :
            possible.append(abs(arr[i]));
        else :
            s.add(arr[i]);
 
    # Find the maximum possible answer
    for i in range(len(possible)) :
        if (possible[i] >= L and possible[i] <= R) :
            ans = max(ans, possible[i]);
 
    return ans;
 
# Driver Code
if __name__ ==  "__main__" :
 
    arr = [ 3, 2, -2, 5, -3 ];
    N = 5; L = 2; R = 3;
 
    Max = findMax(N, arr, L, R);
 
    # Display the output
    print(Max);
 
    # This code is contributed by Ankthon

C#




// Java program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
public class GFG
{
// Function to find the maximum value of K
static int findMax(int N, int []arr, int L, int R)
{
 
    // Using a set to store the elements
    HashSet<int> s = new HashSet<int>();
   
    // ArrayList to store the possible answers
    ArrayList possible = new ArrayList();
 
    // Store the answer
    int ans = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // If set has it's negation,
        // check if it is max
        if (s.Contains(arr[i] * -1))
            possible.Add(Math.Abs(arr[i]));
        else
            s.Add(arr[i]);
    }
 
    // Find the maximum possible answer
    for (int i = 0; i < possible.Count; i++) {
        if ((int)possible[i] >= L && (int)possible[i] <= R) {
            ans = Math.Max(ans, (int)possible[i]);
        }
    }
 
    return ans;
}
 
// Driver Code
public static void Main()
{
 
    int []arr = { 3, 2, -2, 5, -3 };
    int N = 5, L = 2, R = 3;
 
    int max = findMax(N, arr, L, R);
 
    // Display the output
    Console.Write(max);;
 
}
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript




<script>
 
        // JavaScript Program to implement
        // the above approach
 
        // Function to find the maximum value of K
        function findMax(N, arr, L, R) {
 
            // Using a set to store the elements
            let s = new Set();
 
            // Vector to store the possible answers
            let possible = [];
 
            // Store the answer
            let ans = 0;
 
            // Traverse the array
            for (let i = 0; i < N; i++) {
 
                // If set has it's negation,
                // check if it is max
                if (s.has(arr[i] * -1))
                    possible.push(Math.abs(arr[i]));
                else
                    s.add(arr[i]);
            }
 
            // Find the maximum possible answer
            for (let i = 0; i < possible.length; i++) {
                if (possible[i] >= L && possible[i] <= R)
                    ans = Math.max(ans, possible[i]);
            }
 
            return ans;
        }
 
        // Driver Code
        let arr = [3, 2, -2, 5, -3];
        let N = 5, L = 2, R = 3;
 
        let max = findMax(N, arr, L, R);
 
        // Display the output
        document.write(max + '<br');
 
    // This code is contributed by Potta Lokesh
    </script>
Output
3

Time Complexity: O(N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!