Skip to content
Related Articles

Related Articles

Improve Article

Largest sum Zigzag sequence in a matrix

  • Difficulty Level : Medium
  • Last Updated : 27 Apr, 2021

Given a matrix of size n x n, find the sum of the Zigzag sequence with the largest sum. A zigzag sequence starts from the top and ends at the bottom. Two consecutive elements of sequence cannot belong to the same column. 
 

Examples: 

Input : mat[][] = 3  1  2
                  4  8  5
                  6  9  7
Output : 18
Zigzag sequence is: 3->8->7
Another such sequence is 2->4->7

Input : mat[][] =  4  2  1
                   3  9  6
                  11  3 15
Output : 28

This problem has an Optimal Substructure
 

Maximum Zigzag sum starting from arr[i][j] to a 
bottom cell can be written as :
zzs(i, j) = arr[i][j] + max(zzs(i+1, k)), 
               where k = 0, 1, 2 and k != j
zzs(i, j) = arr[i][j], if i = n-1 

We have to find the largest among all as
Result = zzs(0, j) where 0 <= j < n

C++




// C++ program to find the largest sum zigzag sequence
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100;
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
int largestZigZagSumRec(int mat[][MAX], int i,
                                int j, int n)
{
   // If we have reached bottom
   if (i == n-1)
     return mat[i][j];
 
   // Find the largest sum by considering all
   // possible next elements in sequence.
   int zzs = 0;
   for (int k=0; k<n; k++)
     if (k != j)
       zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n));
 
   return zzs + mat[i][j];
}
 
// Returns largest possible sum of a Zizag sequence
// starting from top and ending at bottom.
int largestZigZag(int mat[][MAX], int n)
{
   // Consider all cells of top row as starting point
   int res = 0;
   for (int j=0; j<n; j++)
     res = max(res, largestZigZagSumRec(mat, 0, j, n));
 
   return res;
}
 
// Driver program to test above
int main()
{
    int n = 3;
    int  mat[][MAX] = { {4, 2, 1},
                        {3, 9, 6},
                        {11, 3, 15}};
    cout << "Largest zigzag sum: " << largestZigZag(mat, n);
    return 0;
}

Java




// Java program to find the largest sum
// zigzag sequence
import java.io.*;
 
class GFG {
 
    static int MAX = 100;
     
    // Returns largest sum of a Zigzag
    // sequence starting from (i, j)
    // and ending at a bottom cell.
    static int largestZigZagSumRec(int mat[][],
                            int i, int j, int n)
    {
         
        // If we have reached bottom
        if (i == n-1)
            return mat[i][j];
         
        // Find the largest sum by considering all
        // possible next elements in sequence.
        int zzs = 0;
         
        for (int k=0; k<n; k++)
            if (k != j)
            zzs = Math.max(zzs,
               largestZigZagSumRec(mat, i+1, k, n));
         
        return zzs + mat[i][j];
    }
     
    // Returns largest possible sum of a Zizag
    // sequence starting from top and ending
    // at bottom.
    static int largestZigZag(int mat[][], int n)
    {
        // Consider all cells of top row as starting
        // point
        int res = 0;
        for (int j=0; j<n; j++)
            res = Math.max(res,
                   largestZigZagSumRec(mat, 0, j, n));
         
        return res;
    }
     
    // Driver program to test above
    public static void main (String[] args)
    {
        int n = 3;
         
        int mat[][] = { {4, 2, 1},
                        {3, 9, 6},
                        {11, 3, 15} };
        System.out.println( "Largest zigzag sum: "
                       + largestZigZag(mat, n));
    }
}
 
// This code is contributed by anuj_67.

Python 3




# Python3 program to find the largest
# sum zigzag sequence
MAX = 100
 
# Returns largest sum of a Zigzag
# sequence starting from (i, j) and
# ending at a bottom cell.
def largestZigZagSumRec( mat, i, j, n):
     
    # If we have reached bottom
    if (i == n-1):
        return mat[i][j]
     
    # Find the largest sum by considering all
    # possible next elements in sequence.
    zzs = 0
    for k in range(n):
        if (k != j):
            zzs = max(zzs, largestZigZagSumRec(mat, i + 1, k, n))
     
    return zzs + mat[i][j]
 
# Returns largest possible sum of a
# Zizag sequence starting from top
# and ending at bottom.
def largestZigZag(mat, n):
         
    # Consider all cells of top row as
    # starting point
    res = 0
    for j in range(n):
        res = max(res, largestZigZagSumRec(mat, 0, j, n))
     
    return res
 
# Driver Code
if __name__ == "__main__":
    n = 3
    mat = [ [4, 2, 1],
            [3, 9, 6],
            [11, 3, 15]]
    print("Largest zigzag sum: " ,
           largestZigZag(mat, n))
 
# This code is contributed by ChitraNayal

C#




// C# program to find the largest sum
// zigzag sequence
using System;
class GFG {
 
    // static int MAX = 100;
     
    // Returns largest sum of a Zigzag
    // sequence starting from (i, j)
    // and ending at a bottom cell.
    static int largestZigZagSumRec(int [,]mat,
                          int i, int j, int n)
    {
         
        // If we have reached bottom
        if (i == n-1)
            return mat[i,j];
         
        // Find the largest sum by considering all
        // possible next elements in sequence.
        int zzs = 0;
         
        for (int k = 0; k < n; k++)
            if (k != j)
            zzs = Math.Max(zzs, largestZigZagSumRec(mat,
                                           i + 1, k, n));
         
        return zzs + mat[i,j];
    }
     
    // Returns largest possible
    // sum of a Zizag sequence
    // starting from top and ending
    // at bottom.
    static int largestZigZag(int [,]mat, int n)
    {
         
        // Consider all cells of
        // top row as starting
        // point
        int res = 0;
        for (int j = 0; j < n; j++)
            res = Math.Max(res,
                largestZigZagSumRec(mat, 0, j, n));
         
        return res;
    }
     
    // Driver Code
    public static void Main ()
    {
        int n = 3;
        int [,]mat = {{4, 2, 1},
                      {3, 9, 6},
                      {11, 3, 15}};
        Console.WriteLine("Largest zigzag sum: "
                           + largestZigZag(mat, n));
    }
}
 
// This code is contributed by anuj_67.

PHP




<?php
// PHP program to find the
// largest sum zigzag sequence
 
$MAX = 100;
 
// Returns largest sum of a
// Zigzag sequence starting
// from (i, j) and ending at
// a bottom cell.
function largestZigZagSumRec($mat, $i,
                              $j, $n)
{
    // If we have reached bottom
    if ($i == $n - 1)
        return $mat[$i][$j];
     
    // Find the largest sum
    // by considering all
    // possible next elements
    // in sequence.
    $zzs = 0;
    for ($k = 0; $k < $n; $k++)
        if ($k != $j)
        $zzs = max($zzs, largestZigZagSumRec($mat,
                                $i + 1, $k, $n));
     
    return $zzs + $mat[$i][$j];
}
 
// Returns largest possible
// sum of a Zizag sequence
// starting from top and
// ending at bottom.
function largestZigZag( $mat, $n)
{
     
    // Consider all cells of top
    // row as starting point
    $res = 0;
    for ($j = 0; $j < $n; $j++)
        $res = max($res, largestZigZagSumRec(
                            $mat, 0, $j, $n));
     
    return $res;
}
 
    // Driver Code
    $n = 3;
    $mat = array(array(4, 2, 1),
                 array(3, 9, 6),
                 array(11, 3, 15));
    echo "Largest zigzag sum: " , largestZigZag($mat, $n);
     
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// Javascript program to find the largest sum
// zigzag sequence
 
    let  MAX = 100;
     
    // Returns largest sum of a Zigzag
    // sequence starting from (i, j)
    // and ending at a bottom cell.
    function largestZigZagSumRec(mat,i,j,n)
    {
        // If we have reached bottom
        if (i == n-1)
            return mat[i][j];
           
        // Find the largest sum by considering all
        // possible next elements in sequence.
        let zzs = 0;
           
        for (let k=0; k<n; k++)
            if (k != j)
            zzs = Math.max(zzs,
               largestZigZagSumRec(mat, i+1, k, n));
           
        return zzs + mat[i][j];
    }
     
     
    // Returns largest possible sum of a Zizag
    // sequence starting from top and ending
    // at bottom.
    function largestZigZag(mat,n)
    {
        // Consider all cells of top row as starting
        // point
        let res = 0;
        for (let j=0; j<n; j++)
            res = Math.max(res,
                   largestZigZagSumRec(mat, 0, j, n));
           
        return res;
    }
     
    // Driver program to test above
    let n = 3;
     
    let mat = [ [4, 2, 1],
            [3, 9, 6],
            [11, 3, 15]];
       document.write("Largest zigzag sum: " +
           largestZigZag(mat, n))
     
    // This code is contributed by rag2127
     
</script>

Output:

Largest zigzag sum: 28

Overlapping Subproblems 
Considering the above implementation, for a matrix mat[][] of size 3 x 3, to find the zigzag sum(zzs) for an element mat(i,j), the following recursion tree is formed.
 



Recursion tree for cell (0, 0)
             zzs(0,0)                                
           /         \                               
    zzs(1,1)           zzs(1,2)                      
    /     \            /      \                      
zzs(2,0)  zzs(2,2)  zzs(2,0)  zzs(2,1)               


Recursion tree for cell (0, 1)
            zzs(0,1)
           /         \              
    zzs(1,0)          zzs(1,2)
    /     \            /      \    
zzs(2,1)  zzs(2,2)  zzs(2,0)  zzs(2,1)

Recursion tree for cell (0, 2)
             zzs(0,2)
           /         \                                             
    zzs(1,0)           zzs(1,1)                             
    /     \            /      \                             
 zzs(2,1)  zzs(2,2)  zzs(2,0)  zzs(2,2)

We can see that there are many subproblems that are solved again and again. So this problem has Overlapping Substructure property and recomputation of same subproblems can be avoided by either using Memoization or Tabulation. Following is a tabulated implementation for the LIS problem.
 

C++




// Memoization based C++ program to find the largest
// sum zigzag sequence
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100;
int dp[MAX][MAX];
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
int largestZigZagSumRec(int mat[][MAX], int i,
                                int j, int n)
{
   if (dp[i][j] != -1)
      return dp[i][j];
 
   // If we have reached bottom
   if (i == n-1)
     return (dp[i][j] = mat[i][j]);
 
   // Find the largest sum by considering all
   // possible next elements in sequence.
   int zzs = 0;
   for (int k=0; k<n; k++)
     if (k != j)
       zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n));
 
   return (dp[i][j] = (zzs + mat[i][j]));
}
 
// Returns largest possible sum of a Zizag sequence
// starting from top and ending at bottom.
int largestZigZag(int mat[][MAX], int n)
{
   memset(dp, -1, sizeof(dp));
 
   // Consider all cells of top row as starting point
   int res = 0;
   for (int j=0; j<n; j++)
     res = max(res, largestZigZagSumRec(mat, 0, j, n));
 
   return res;
}
 
// Driver program to test above
int main()
{
    int n = 3;
    int  mat[][MAX] = { {4, 2, 1},
                        {3, 9, 6},
                        {11, 3, 15}};
    cout << "Largest zigzag sum: " << largestZigZag(mat, n);
    return 0;
}

Java




// Memoization based Java program to find the largest
// sum zigzag sequence
class GFG
{
 
static int MAX = 100;
static int [][]dp = new int[MAX][MAX];
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
static int largestZigZagSumRec(int mat[][], int i,
                                int j, int n)
{
    if (dp[i][j] != -1)
        return dp[i][j];
     
    // If we have reached bottom
    if (i == n - 1)
        return (dp[i][j] = mat[i][j]);
     
    // Find the largest sum by considering all
    // possible next elements in sequence.
    int zzs = 0;
    for (int k = 0; k < n; k++)
        if (k != j)
            zzs = Math.max(zzs, largestZigZagSumRec(mat,
                                    i + 1, k, n));
     
    return (dp[i][j] = (zzs + mat[i][j]));
}
 
// Returns largest possible sum of a Zizag sequence
// starting from top and ending at bottom.
static int largestZigZag(int mat[][], int n)
{
    for (int i = 0; i < MAX; i++)
        for (int k = 0; k < MAX; k++)
                dp[i][k] = -1;
     
    // Consider all cells of top row as starting point
    int res = 0;
    for (int j = 0; j < n; j++)
        res = Math.max(res, largestZigZagSumRec(mat,
                                           0, j, n));
     
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    int mat[][] = { {4, 2, 1},
                    {3, 9, 6},
                    {11, 3, 15}};
    System.out.print("Largest zigzag sum: " +
                        largestZigZag(mat, n));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Memoization based Python3 program to find the largest
# sum zigzag sequence
MAX = 100;
 
dp = [[0 for i in range(MAX)] for j in range(MAX)]
 
# Returns largest sum of a Zigzag sequence starting
# from (i, j) and ending at a bottom cell.
def largestZigZagSumRec(mat, i, j, n):
    if (dp[i][j] != -1):
        return dp[i][j];
 
    # If we have reached bottom
    if (i == n - 1):
        dp[i][j] = mat[i][j];
        return (dp[i][j]);
 
    # Find the largest sum by considering all
    # possible next elements in sequence.
    zzs = 0;
    for k in range(n):
        if (k != j):
            zzs = max(zzs, largestZigZagSumRec(mat,
                     i + 1, k, n));
    dp[i][j] = (zzs + mat[i][j]);
    return (dp[i][j]);
 
# Returns largest possible sum of a Zizag sequence
# starting from top and ending at bottom.
def largestZigZag(mat, n):
    for i in range(MAX):
        for k in range(MAX):
            dp[i][k] = -1;
 
    # Consider all cells of top row as starting point
    res = 0;
    for j in range(n):
        res = max(res, largestZigZagSumRec(mat, 0, j, n));
 
    return res;
 
# Driver code
if __name__ == '__main__':
    n = 3;
    mat = [[4, 2, 1], [3, 9, 6], [11, 3, 15]];
    print("Largest zigzag sum: ", largestZigZag(mat, n));
 
# This code is contributed by Rajput-Ji

C#




// Memoization based C# program to find the largest
// sum zigzag sequence
using System;
 
class GFG
{
 
static int MAX = 100;
static int [,]dp = new int[MAX, MAX];
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
static int largestZigZagSumRec(int [,]mat, int i,
                                int j, int n)
{
    if (dp[i, j] != -1)
        return dp[i, j];
     
    // If we have reached bottom
    if (i == n - 1)
        return (dp[i, j] = mat[i, j]);
     
    // Find the largest sum by considering all
    // possible next elements in sequence.
    int zzs = 0;
    for (int k = 0; k < n; k++)
        if (k != j)
            zzs = Math.Max(zzs, largestZigZagSumRec(mat,
                                    i + 1, k, n));
     
    return (dp[i, j] = (zzs + mat[i, j]));
}
 
// Returns largest possible sum of a Zizag sequence
// starting from top and ending at bottom.
static int largestZigZag(int [,]mat, int n)
{
    for (int i = 0; i < MAX; i++)
        for (int k = 0; k < MAX; k++)
                dp[i, k] = -1;
     
    // Consider all cells of top row as starting point
    int res = 0;
    for (int j = 0; j < n; j++)
        res = Math.Max(res, largestZigZagSumRec(mat,
                                        0, j, n));
    return res;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3;
    int [,]mat = { {4, 2, 1},
                    {3, 9, 6},
                    {11, 3, 15}};
    Console.Write("Largest zigzag sum: " +
                        largestZigZag(mat, n));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
// Memoization based Javascript program to find the largest
// sum zigzag sequence
     
    let MAX = 100;
    let dp=new Array(MAX);
     
    // Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
    function largestZigZagSumRec(mat,i,j,n)
    {
        if (dp[i][j] != -1)
        return dp[i][j];
      
    // If we have reached bottom
    if (i == n - 1)
        return (dp[i][j] = mat[i][j]);
      
    // Find the largest sum by considering all
    // possible next elements in sequence.
    let zzs = 0;
    for (let k = 0; k < n; k++)
        if (k != j)
            zzs = Math.max(zzs, largestZigZagSumRec(mat,
                                    i + 1, k, n));
      
    return (dp[i][j] = (zzs + mat[i][j]));
    }
     
    // Returns largest possible sum of a Zizag sequence
// starting from top and ending at bottom.
    function largestZigZag(mat,n)
    {
        for (let i = 0; i < MAX; i++)
        {
            dp[i]=new Array(MAX);
            for (let k = 0; k < MAX; k++)
                dp[i][k] = -1;
         }
    // Consider all cells of top row as starting point
    let res = 0;
    for (let j = 0; j < n; j++)
        res = Math.max(res, largestZigZagSumRec(mat,
                                           0, j, n));
      
    return res;
    }
     
    // Driver code
    let n = 3;
    let mat=[[4, 2, 1],[3, 9, 6],[11, 3, 15]];
    document.write("Largest zigzag sum: " +
                        largestZigZag(mat, n));
     
     
    // This code is contributed by avanitrachhadiya2155
</script>

Output: 

Largest zigzag sum: 28

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :