Largest sum Zigzag sequence in a matrix

• Difficulty Level : Medium
• Last Updated : 16 Dec, 2021

Given a matrix of size n x n, find the sum of the Zigzag sequence with the largest sum. A zigzag sequence starts from the top and ends at the bottom. Two consecutive elements of sequence cannot belong to the same column.

Examples:

Input : mat[][] = 3  1  2
4  8  5
6  9  7
Output : 18
Zigzag sequence is: 3->8->7
Another such sequence is 2->4->7

Input : mat[][] =  4  2  1
3  9  6
11  3 15
Output : 28

Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

This problem has an Optimal Substructure

Maximum Zigzag sum starting from arr[i][j] to a
bottom cell can be written as :
zzs(i, j) = arr[i][j] + max(zzs(i+1, k)),
where k = 0, 1, 2 and k != j
zzs(i, j) = arr[i][j], if i = n-1

We have to find the largest among all as
Result = zzs(0, j) where 0 <= j < n

C++

// C++ program to find the largest sum zigzag sequence
#include <bits/stdc++.h>
using namespace std;

const int MAX = 100;

// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
int largestZigZagSumRec(int mat[][MAX], int i,
int j, int n)
{
// If we have reached bottom
if (i == n-1)
return mat[i][j];

// Find the largest sum by considering all
// possible next elements in sequence.
int zzs = 0;
for (int k=0; k<n; k++)
if (k != j)
zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n));

return zzs + mat[i][j];
}

// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
int largestZigZag(int mat[][MAX], int n)
{
// Consider all cells of top row as starting point
int res = 0;
for (int j=0; j<n; j++)
res = max(res, largestZigZagSumRec(mat, 0, j, n));

return res;
}

// Driver program to test above
int main()
{
int n = 3;
int  mat[][MAX] = { {4, 2, 1},
{3, 9, 6},
{11, 3, 15}};
cout << "Largest zigzag sum: " << largestZigZag(mat, n);
return 0;
}

Java

// Java program to find the largest sum
// zigzag sequence
import java.io.*;

class GFG {

static int MAX = 100;

// Returns largest sum of a Zigzag
// sequence starting from (i, j)
// and ending at a bottom cell.
static int largestZigZagSumRec(int mat[][],
int i, int j, int n)
{

// If we have reached bottom
if (i == n-1)
return mat[i][j];

// Find the largest sum by considering all
// possible next elements in sequence.
int zzs = 0;

for (int k=0; k<n; k++)
if (k != j)
zzs = Math.max(zzs,
largestZigZagSumRec(mat, i+1, k, n));

return zzs + mat[i][j];
}

// Returns largest possible sum of a Zigzag
// sequence starting from top and ending
// at bottom.
static int largestZigZag(int mat[][], int n)
{
// Consider all cells of top row as starting
// point
int res = 0;
for (int j=0; j<n; j++)
res = Math.max(res,
largestZigZagSumRec(mat, 0, j, n));

return res;
}

// Driver program to test above
public static void main (String[] args)
{
int n = 3;

int mat[][] = { {4, 2, 1},
{3, 9, 6},
{11, 3, 15} };
System.out.println( "Largest zigzag sum: "
+ largestZigZag(mat, n));
}
}

// This code is contributed by anuj_67.

Python 3

# Python3 program to find the largest
# sum zigzag sequence
MAX = 100

# Returns largest sum of a Zigzag
# sequence starting from (i, j) and
# ending at a bottom cell.
def largestZigZagSumRec( mat, i, j, n):

# If we have reached bottom
if (i == n-1):
return mat[i][j]

# Find the largest sum by considering all
# possible next elements in sequence.
zzs = 0
for k in range(n):
if (k != j):
zzs = max(zzs, largestZigZagSumRec(mat, i + 1, k, n))

return zzs + mat[i][j]

# Returns largest possible sum of a
# Zigzag sequence starting from top
# and ending at bottom.
def largestZigZag(mat, n):

# Consider all cells of top row as
# starting point
res = 0
for j in range(n):
res = max(res, largestZigZagSumRec(mat, 0, j, n))

return res

# Driver Code
if __name__ == "__main__":
n = 3
mat = [ [4, 2, 1],
[3, 9, 6],
[11, 3, 15]]
print("Largest zigzag sum: " ,
largestZigZag(mat, n))

# This code is contributed by ChitraNayal

C#

// C# program to find the largest sum
// zigzag sequence
using System;
class GFG {

// static int MAX = 100;

// Returns largest sum of a Zigzag
// sequence starting from (i, j)
// and ending at a bottom cell.
static int largestZigZagSumRec(int [,]mat,
int i, int j, int n)
{

// If we have reached bottom
if (i == n-1)
return mat[i,j];

// Find the largest sum by considering all
// possible next elements in sequence.
int zzs = 0;

for (int k = 0; k < n; k++)
if (k != j)
zzs = Math.Max(zzs, largestZigZagSumRec(mat,
i + 1, k, n));

return zzs + mat[i,j];
}

// Returns largest possible
// sum of a Zigzag sequence
// starting from top and ending
// at bottom.
static int largestZigZag(int [,]mat, int n)
{

// Consider all cells of
// top row as starting
// point
int res = 0;
for (int j = 0; j < n; j++)
res = Math.Max(res,
largestZigZagSumRec(mat, 0, j, n));

return res;
}

// Driver Code
public static void Main ()
{
int n = 3;
int [,]mat = {{4, 2, 1},
{3, 9, 6},
{11, 3, 15}};
Console.WriteLine("Largest zigzag sum: "
+ largestZigZag(mat, n));
}
}

// This code is contributed by anuj_67.

PHP

<?php
// PHP program to find the
// largest sum zigzag sequence

\$MAX = 100;

// Returns largest sum of a
// Zigzag sequence starting
// from (i, j) and ending at
// a bottom cell.
function largestZigZagSumRec(\$mat, \$i,
\$j, \$n)
{
// If we have reached bottom
if (\$i == \$n - 1)
return \$mat[\$i][\$j];

// Find the largest sum
// by considering all
// possible next elements
// in sequence.
\$zzs = 0;
for (\$k = 0; \$k < \$n; \$k++)
if (\$k != \$j)
\$zzs = max(\$zzs, largestZigZagSumRec(\$mat,
\$i + 1, \$k, \$n));

return \$zzs + \$mat[\$i][\$j];
}

// Returns largest possible
// sum of a Zigzag sequence
// starting from top and
// ending at bottom.
function largestZigZag( \$mat, \$n)
{

// Consider all cells of top
// row as starting point
\$res = 0;
for (\$j = 0; \$j < \$n; \$j++)
\$res = max(\$res, largestZigZagSumRec(
\$mat, 0, \$j, \$n));

return \$res;
}

// Driver Code
\$n = 3;
\$mat = array(array(4, 2, 1),
array(3, 9, 6),
array(11, 3, 15));
echo "Largest zigzag sum: " , largestZigZag(\$mat, \$n);

// This code is contributed by anuj_67.
?>

Javascript

<script>

// Javascript program to find the largest sum
// zigzag sequence

let  MAX = 100;

// Returns largest sum of a Zigzag
// sequence starting from (i, j)
// and ending at a bottom cell.
function largestZigZagSumRec(mat,i,j,n)
{
// If we have reached bottom
if (i == n-1)
return mat[i][j];

// Find the largest sum by considering all
// possible next elements in sequence.
let zzs = 0;

for (let k=0; k<n; k++)
if (k != j)
zzs = Math.max(zzs,
largestZigZagSumRec(mat, i+1, k, n));

return zzs + mat[i][j];
}

// Returns largest possible sum of a Zigzag
// sequence starting from top and ending
// at bottom.
function largestZigZag(mat,n)
{
// Consider all cells of top row as starting
// point
let res = 0;
for (let j=0; j<n; j++)
res = Math.max(res,
largestZigZagSumRec(mat, 0, j, n));

return res;
}

// Driver program to test above
let n = 3;

let mat = [ [4, 2, 1],
[3, 9, 6],
[11, 3, 15]];
document.write("Largest zigzag sum: " +
largestZigZag(mat, n))

// This code is contributed by rag2127

</script>

Output:

Largest zigzag sum: 28

Overlapping Subproblems
Considering the above implementation, for a matrix mat[][] of size 3 x 3, to find the zigzag sum(zzs) for an element mat(i,j), the following recursion tree is formed.

Recursion tree for cell (0, 0)
zzs(0,0)
/         \
zzs(1,1)           zzs(1,2)
/     \            /      \
zzs(2,0)  zzs(2,2)  zzs(2,0)  zzs(2,1)

Recursion tree for cell (0, 1)
zzs(0,1)
/         \
zzs(1,0)          zzs(1,2)
/     \            /      \
zzs(2,1)  zzs(2,2)  zzs(2,0)  zzs(2,1)

Recursion tree for cell (0, 2)
zzs(0,2)
/         \
zzs(1,0)           zzs(1,1)
/     \            /      \
zzs(2,1)  zzs(2,2)  zzs(2,0)  zzs(2,2)

We can see that there are many subproblems that are solved again and again. So this problem has Overlapping Substructure property and recomputation of same subproblems can be avoided by either using Memoization or Tabulation. Following is a tabulated implementation for the LIS problem.

C++

// Memoization based C++ program to find the largest
// sum zigzag sequence
#include <bits/stdc++.h>
using namespace std;

const int MAX = 100;
int dp[MAX][MAX];

// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
int largestZigZagSumRec(int mat[][MAX], int i,
int j, int n)
{
if (dp[i][j] != -1)
return dp[i][j];

// If we have reached bottom
if (i == n-1)
return (dp[i][j] = mat[i][j]);

// Find the largest sum by considering all
// possible next elements in sequence.
int zzs = 0;
for (int k=0; k<n; k++)
if (k != j)
zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n));

return (dp[i][j] = (zzs + mat[i][j]));
}

// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
int largestZigZag(int mat[][MAX], int n)
{
memset(dp, -1, sizeof(dp));

// Consider all cells of top row as starting point
int res = 0;
for (int j=0; j<n; j++)
res = max(res, largestZigZagSumRec(mat, 0, j, n));

return res;
}

// Driver program to test above
int main()
{
int n = 3;
int  mat[][MAX] = { {4, 2, 1},
{3, 9, 6},
{11, 3, 15}};
cout << "Largest zigzag sum: " << largestZigZag(mat, n);
return 0;
}

Java

// Memoization based Java program to find the largest
// sum zigzag sequence
class GFG
{

static int MAX = 100;
static int [][]dp = new int[MAX][MAX];

// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
static int largestZigZagSumRec(int mat[][], int i,
int j, int n)
{
if (dp[i][j] != -1)
return dp[i][j];

// If we have reached bottom
if (i == n - 1)
return (dp[i][j] = mat[i][j]);

// Find the largest sum by considering all
// possible next elements in sequence.
int zzs = 0;
for (int k = 0; k < n; k++)
if (k != j)
zzs = Math.max(zzs, largestZigZagSumRec(mat,
i + 1, k, n));

return (dp[i][j] = (zzs + mat[i][j]));
}

// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
static int largestZigZag(int mat[][], int n)
{
for (int i = 0; i < MAX; i++)
for (int k = 0; k < MAX; k++)
dp[i][k] = -1;

// Consider all cells of top row as starting point
int res = 0;
for (int j = 0; j < n; j++)
res = Math.max(res, largestZigZagSumRec(mat,
0, j, n));

return res;
}

// Driver code
public static void main(String[] args)
{
int n = 3;
int mat[][] = { {4, 2, 1},
{3, 9, 6},
{11, 3, 15}};
System.out.print("Largest zigzag sum: " +
largestZigZag(mat, n));
}
}

// This code is contributed by PrinciRaj1992

Python3

# Memoization based Python3 program to find the largest
# sum zigzag sequence
MAX = 100;

dp = [[0 for i in range(MAX)] for j in range(MAX)]

# Returns largest sum of a Zigzag sequence starting
# from (i, j) and ending at a bottom cell.
def largestZigZagSumRec(mat, i, j, n):
if (dp[i][j] != -1):
return dp[i][j];

# If we have reached bottom
if (i == n - 1):
dp[i][j] = mat[i][j];
return (dp[i][j]);

# Find the largest sum by considering all
# possible next elements in sequence.
zzs = 0;
for k in range(n):
if (k != j):
zzs = max(zzs, largestZigZagSumRec(mat,
i + 1, k, n));
dp[i][j] = (zzs + mat[i][j]);
return (dp[i][j]);

# Returns largest possible sum of a Zigzag sequence
# starting from top and ending at bottom.
def largestZigZag(mat, n):
for i in range(MAX):
for k in range(MAX):
dp[i][k] = -1;

# Consider all cells of top row as starting point
res = 0;
for j in range(n):
res = max(res, largestZigZagSumRec(mat, 0, j, n));

return res;

# Driver code
if __name__ == '__main__':
n = 3;
mat = [[4, 2, 1], [3, 9, 6], [11, 3, 15]];
print("Largest zigzag sum: ", largestZigZag(mat, n));

# This code is contributed by Rajput-Ji

C#

// Memoization based C# program to find the largest
// sum zigzag sequence
using System;

class GFG
{

static int MAX = 100;
static int [,]dp = new int[MAX, MAX];

// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
static int largestZigZagSumRec(int [,]mat, int i,
int j, int n)
{
if (dp[i, j] != -1)
return dp[i, j];

// If we have reached bottom
if (i == n - 1)
return (dp[i, j] = mat[i, j]);

// Find the largest sum by considering all
// possible next elements in sequence.
int zzs = 0;
for (int k = 0; k < n; k++)
if (k != j)
zzs = Math.Max(zzs, largestZigZagSumRec(mat,
i + 1, k, n));

return (dp[i, j] = (zzs + mat[i, j]));
}

// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
static int largestZigZag(int [,]mat, int n)
{
for (int i = 0; i < MAX; i++)
for (int k = 0; k < MAX; k++)
dp[i, k] = -1;

// Consider all cells of top row as starting point
int res = 0;
for (int j = 0; j < n; j++)
res = Math.Max(res, largestZigZagSumRec(mat,
0, j, n));
return res;
}

// Driver code
public static void Main(String[] args)
{
int n = 3;
int [,]mat = { {4, 2, 1},
{3, 9, 6},
{11, 3, 15}};
Console.Write("Largest zigzag sum: " +
largestZigZag(mat, n));
}
}

// This code is contributed by 29AjayKumar

Javascript

<script>
// Memoization based Javascript program to find the largest
// sum zigzag sequence

let MAX = 100;
let dp=new Array(MAX);

// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
function largestZigZagSumRec(mat,i,j,n)
{
if (dp[i][j] != -1)
return dp[i][j];

// If we have reached bottom
if (i == n - 1)
return (dp[i][j] = mat[i][j]);

// Find the largest sum by considering all
// possible next elements in sequence.
let zzs = 0;
for (let k = 0; k < n; k++)
if (k != j)
zzs = Math.max(zzs, largestZigZagSumRec(mat,
i + 1, k, n));

return (dp[i][j] = (zzs + mat[i][j]));
}

// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
function largestZigZag(mat,n)
{
for (let i = 0; i < MAX; i++)
{
dp[i]=new Array(MAX);
for (let k = 0; k < MAX; k++)
dp[i][k] = -1;
}
// Consider all cells of top row as starting point
let res = 0;
for (let j = 0; j < n; j++)
res = Math.max(res, largestZigZagSumRec(mat,
0, j, n));

return res;
}

// Driver code
let n = 3;
let mat=[[4, 2, 1],[3, 9, 6],[11, 3, 15]];
document.write("Largest zigzag sum: " +
largestZigZag(mat, n));

// This code is contributed by avanitrachhadiya2155
</script>

Output:

Largest zigzag sum: 28

My Personal Notes arrow_drop_up