Skip to content
Related Articles

Related Articles

Improve Article
Largest Sum Contiguous Subarray
  • Difficulty Level : Medium
  • Last Updated : 27 May, 2021

Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers that has the largest sum. 

kadane-algorithm

 

Kadane’s Algorithm:

Initialize:
    max_so_far = INT_MIN
    max_ending_here = 0

Loop for each element of the array
  (a) max_ending_here = max_ending_here + a[i]
  (b) if(max_so_far < max_ending_here)
            max_so_far = max_ending_here
  (c) if(max_ending_here < 0)
            max_ending_here = 0
return max_so_far

Explanation: 
The simple idea of Kadane’s algorithm is to look for all positive contiguous segments of the array (max_ending_here is used for this). And keep track of maximum sum contiguous segment among all positive segments (max_so_far is used for this). Each time we get a positive-sum compare it with max_so_far and update max_so_far if it is greater than max_so_far 



    Lets take the example:
    {-2, -3, 4, -1, -2, 1, 5, -3}

    max_so_far = max_ending_here = 0

    for i=0,  a[0] =  -2
    max_ending_here = max_ending_here + (-2)
    Set max_ending_here = 0 because max_ending_here < 0

    for i=1,  a[1] =  -3
    max_ending_here = max_ending_here + (-3)
    Set max_ending_here = 0 because max_ending_here < 0

    for i=2,  a[2] =  4
    max_ending_here = max_ending_here + (4)
    max_ending_here = 4
    max_so_far is updated to 4 because max_ending_here greater 
    than max_so_far which was 0 till now

    for i=3,  a[3] =  -1
    max_ending_here = max_ending_here + (-1)
    max_ending_here = 3

    for i=4,  a[4] =  -2
    max_ending_here = max_ending_here + (-2)
    max_ending_here = 1

    for i=5,  a[5] =  1
    max_ending_here = max_ending_here + (1)
    max_ending_here = 2

    for i=6,  a[6] =  5
    max_ending_here = max_ending_here + (5)
    max_ending_here = 7
    max_so_far is updated to 7 because max_ending_here is 
    greater than max_so_far

    for i=7,  a[7] =  -3
    max_ending_here = max_ending_here + (-3)
    max_ending_here = 4

Program: 

C++




// C++ program to print largest contiguous array sum
#include<iostream>
#include<climits>
using namespace std;
 
int maxSubArraySum(int a[], int size)
{
    int max_so_far = INT_MIN, max_ending_here = 0;
 
    for (int i = 0; i < size; i++)
    {
        max_ending_here = max_ending_here + a[i];
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
 
        if (max_ending_here < 0)
            max_ending_here = 0;
    }
    return max_so_far;
}
 
/*Driver program to test maxSubArraySum*/
int main()
{
    int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
    int n = sizeof(a)/sizeof(a[0]);
    int max_sum = maxSubArraySum(a, n);
    cout << "Maximum contiguous sum is " << max_sum;
    return 0;
}

Java




import java.io.*;
// Java program to print largest contiguous array sum
import java.util.*;
 
class Kadane
{
    public static void main (String[] args)
    {
        int [] a = {-2, -3, 4, -1, -2, 1, 5, -3};
        System.out.println("Maximum contiguous sum is " +
                                       maxSubArraySum(a));
    }
 
    static int maxSubArraySum(int a[])
    {
        int size = a.length;
        int max_so_far = Integer.MIN_VALUE, max_ending_here = 0;
 
        for (int i = 0; i < size; i++)
        {
            max_ending_here = max_ending_here + a[i];
            if (max_so_far < max_ending_here)
                max_so_far = max_ending_here;
            if (max_ending_here < 0)
                max_ending_here = 0;
        }
        return max_so_far;
    }
}

Python




# Python program to find maximum contiguous subarray
  
# Function to find the maximum contiguous subarray
from sys import maxint
def maxSubArraySum(a,size):
      
    max_so_far = -maxint - 1
    max_ending_here = 0
      
    for i in range(0, size):
        max_ending_here = max_ending_here + a[i]
        if (max_so_far < max_ending_here):
            max_so_far = max_ending_here
 
        if max_ending_here < 0:
            max_ending_here = 0  
    return max_so_far
  
# Driver function to check the above function
a = [-13, -3, -25, -20, -3, -16, -23, -12, -5, -22, -15, -4, -7]
print "Maximum contiguous sum is", maxSubArraySum(a,len(a))
  
#This code is contributed by _Devesh Agrawal_

C#




// C# program to print largest
// contiguous array sum
using System;
 
class GFG
{
    static int maxSubArraySum(int []a)
    {
        int size = a.Length;
        int max_so_far = int.MinValue,
            max_ending_here = 0;
 
        for (int i = 0; i < size; i++)
        {
            max_ending_here = max_ending_here + a[i];
             
            if (max_so_far < max_ending_here)
                max_so_far = max_ending_here;
             
            if (max_ending_here < 0)
                max_ending_here = 0;
        }
         
        return max_so_far;
    }
     
    // Driver code
    public static void Main ()
    {
        int [] a = {-2, -3, 4, -1, -2, 1, 5, -3};
        Console.Write("Maximum contiguous sum is " +
                                maxSubArraySum(a));
    }
 
}
 
// This code is contributed by Sam007_

PHP




<?php
// PHP program to print largest
// contiguous array sum
 
function maxSubArraySum($a, $size)
{
    $max_so_far = PHP_INT_MIN;
    $max_ending_here = 0;
 
    for ($i = 0; $i < $size; $i++)
    {
        $max_ending_here = $max_ending_here + $a[$i];
        if ($max_so_far < $max_ending_here)
            $max_so_far = $max_ending_here;
 
        if ($max_ending_here < 0)
            $max_ending_here = 0;
    }
    return $max_so_far;
}
 
// Driver code
$a = array(-2, -3, 4, -1,
           -2, 1, 5, -3);
$n = count($a);
$max_sum = maxSubArraySum($a, $n);
echo "Maximum contiguous sum is " ,
                          $max_sum;
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// JavaScript program to find maximum
// contiguous subarray
  
// Function to find the maximum
// contiguous subarray
function maxSubArraySum(a, size)
{
    var maxint = Math.pow(2, 53)
    var max_so_far = -maxint - 1
    var max_ending_here = 0
      
    for (var i = 0; i < size; i++)
    {
        max_ending_here = max_ending_here + a[i]
        if (max_so_far < max_ending_here)
            max_so_far = max_ending_here
 
        if (max_ending_here < 0)
            max_ending_here = 0
    }
    return max_so_far
}
  
// Driver code
var a = [ -2, -3, 4, -1, -2, 1, 5, -3 ]
document.write("Maximum contiguous sum is",
               maxSubArraySum(a, a.length))
  
// This code is contributed by AnkThon
 
</script>

Output:

Maximum contiguous sum is 7

Another approach:

 

C++




int maxSubarraySum(int arr[], int size)
{
    int max_ending_here = 0, max_so_far = INT_MIN;
    for (int i = 0; i < size; i++) {
       
        // include current element to previous subarray only
        // when it can add to a bigger number than itself.
        if (arr[i] <= max_ending_here + arr[i]) {
            max_ending_here += arr[i];
        }
       
        // Else start the max subarry from current element
        else {
            max_ending_here = arr[i];
        }
        if (max_ending_here > max_so_far)
            max_so_far = max_ending_here;
    }
    return max_so_far;
} // contributed by Vipul Raj

Java




static int maxSubArraySum(int a[],int size)
{
     
    int max_so_far = a[0], max_ending_here = 0;
 
    for (int i = 0; i < size; i++)
    {
        max_ending_here = max_ending_here + a[i];
        if (max_ending_here < 0)
            max_ending_here = 0;
         
        /* Do not compare for all
           elements. Compare only
           when max_ending_here > 0 */
        else if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
         
    }
    return max_so_far;
}
 
// This code is contributed by ANKITRAI1

Python




def maxSubArraySum(a,size):
     
    max_so_far = a[0]
    max_ending_here = 0
     
    for i in range(0, size):
        max_ending_here = max_ending_here + a[i]
        if max_ending_here < 0:
            max_ending_here = 0
         
        # Do not compare for all elements. Compare only  
        # when  max_ending_here > 0
        elif (max_so_far < max_ending_here):
            max_so_far = max_ending_here
             
    return max_so_far

C#




static int maxSubArraySum(int[] a, int size)
{
    int max_so_far = a[0], max_ending_here = 0;
 
    for (int i = 0; i < size; i++) {
        max_ending_here = max_ending_here + a[i];
        if (max_ending_here < 0)
            max_ending_here = 0;
 
        /* Do not compare for all
        elements. Compare only
        when max_ending_here > 0 */
        else if (max_so_far < max_ending_here)
            max_so_far = max_ending_here;
    }
    return max_so_far;
}
 
// This code is contributed
// by ChitraNayal

PHP




<?php
function maxSubArraySum(&$a, $size)
{
$max_so_far = $a[0];
$max_ending_here = 0;
for ($i = 0; $i < $size; $i++)
{
    $max_ending_here = $max_ending_here + $a[$i];
    if ($max_ending_here < 0)
        $max_ending_here = 0;
 
    /* Do not compare for all elements.
       Compare only when max_ending_here > 0 */
    else if ($max_so_far < $max_ending_here)
        $max_so_far = $max_ending_here;
}
return $max_so_far;
 
// This code is contributed
// by ChitraNayal
?>

Time Complexity: O(n) 

Algorithmic Paradigm: Dynamic Programming
Following is another simple implementation suggested by Mohit Kumar. The implementation handles the case when all numbers in the array are negative. 

C++




#include<iostream>
using namespace std;
 
int maxSubArraySum(int a[], int size)
{
   int max_so_far = a[0];
   int curr_max = a[0];
 
   for (int i = 1; i < size; i++)
   {
        curr_max = max(a[i], curr_max+a[i]);
        max_so_far = max(max_so_far, curr_max);
   }
   return max_so_far;
}
 
/* Driver program to test maxSubArraySum */
int main()
{
   int a[] =  {-2, -3, 4, -1, -2, 1, 5, -3};
   int n = sizeof(a)/sizeof(a[0]);
   int max_sum = maxSubArraySum(a, n);
   cout << "Maximum contiguous sum is " << max_sum;
   return 0;
}

Java




// Java program to print largest contiguous
// array sum
import java.io.*;
 
class GFG {
 
    static int maxSubArraySum(int a[], int size)
    {
    int max_so_far = a[0];
    int curr_max = a[0];
 
    for (int i = 1; i < size; i++)
    {
           curr_max = Math.max(a[i], curr_max+a[i]);
        max_so_far = Math.max(max_so_far, curr_max);
    }
    return max_so_far;
    }
 
    /* Driver program to test maxSubArraySum */
    public static void main(String[] args)
    {
    int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
    int n = a.length;  
    int max_sum = maxSubArraySum(a, n);
    System.out.println("Maximum contiguous sum is "
                       + max_sum);
    }
}
 
// This code is contributed by Prerna Saini

Python




# Python program to find maximum contiguous subarray
 
def maxSubArraySum(a,size):
     
    max_so_far =a[0]
    curr_max = a[0]
     
    for i in range(1,size):
        curr_max = max(a[i], curr_max + a[i])
        max_so_far = max(max_so_far,curr_max)
         
    return max_so_far
 
# Driver function to check the above function
a = [-2, -3, 4, -1, -2, 1, 5, -3]
print"Maximum contiguous sum is" , maxSubArraySum(a,len(a))
 
#This code is contributed by _Devesh Agrawal_

C#




// C# program to print largest
// contiguous array sum
using System;
 
class GFG
{
    static int maxSubArraySum(int []a, int size)
    {
    int max_so_far = a[0];
    int curr_max = a[0];
 
    for (int i = 1; i < size; i++)
    {
        curr_max = Math.Max(a[i], curr_max+a[i]);
        max_so_far = Math.Max(max_so_far, curr_max);
    }
 
    return max_so_far;
    }
 
    // Driver code
    public static void Main ()
    {
        int []a = {-2, -3, 4, -1, -2, 1, 5, -3};
        int n = a.Length;
        Console.Write("Maximum contiguous sum is "
                           + maxSubArraySum(a, n));
    }
 
}
 
// This code is contributed by Sam007_

PHP




<?php
function maxSubArraySum($a, $size)
{
    $max_so_far = $a[0];
    $curr_max = $a[0];
     
    for ($i = 1; $i < $size; $i++)
    {
        $curr_max = max($a[$i],
                        $curr_max + $a[$i]);
        $max_so_far = max($max_so_far,
                          $curr_max);
    }
    return $max_so_far;
}
 
// Driver Code
$a = array(-2, -3, 4, -1,
           -2, 1, 5, -3);
$n = sizeof($a);
$max_sum = maxSubArraySum($a, $n);
echo "Maximum contiguous sum is " .
                          $max_sum;
 
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>

Javascript




<script>
// C# program to prlet largest
// contiguous array sum
 
function maxSubArraySum(a,size)
{
  let max_so_far = a[0];
  let curr_max = a[0];
 
  for (let i = 1; i < size; i++)
  {
      curr_max = Math.max(a[i], curr_max+a[i]);
      max_so_far = Math.max(max_so_far, curr_max);
  }
 
return max_so_far;
}
 
// Driver code
 
let a = [-2, -3, 4, -1, -2, 1, 5, -3];
let n = a.length;
document.write("Maximum contiguous sum is ",maxSubArraySum(a, n));
     
</script>

Output: 

Maximum contiguous sum is 7

To print the subarray with the maximum sum, we maintain indices whenever we get the maximum sum.  

C++




// C++ program to print largest contiguous array sum
#include<iostream>
#include<climits>
using namespace std;
 
int maxSubArraySum(int a[], int size)
{
    int max_so_far = INT_MIN, max_ending_here = 0,
       start =0, end = 0, s=0;
 
    for (int i=0; i< size; i++ )
    {
        max_ending_here += a[i];
 
        if (max_so_far < max_ending_here)
        {
            max_so_far = max_ending_here;
            start = s;
            end = i;
        }
 
        if (max_ending_here < 0)
        {
            max_ending_here = 0;
            s = i + 1;
        }
    }
    cout << "Maximum contiguous sum is "
        << max_so_far << endl;
    cout << "Starting index "<< start
        << endl << "Ending index "<< end << endl;
}
 
/*Driver program to test maxSubArraySum*/
int main()
{
    int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
    int n = sizeof(a)/sizeof(a[0]);
    int max_sum = maxSubArraySum(a, n);
    return 0;
}

Java




// Java program to print largest
// contiguous array sum
class GFG {
 
    static void maxSubArraySum(int a[], int size)
    {
        int max_so_far = Integer.MIN_VALUE,
        max_ending_here = 0,start = 0,
        end = 0, s = 0;
 
        for (int i = 0; i < size; i++)
        {
            max_ending_here += a[i];
 
            if (max_so_far < max_ending_here)
            {
                max_so_far = max_ending_here;
                start = s;
                end = i;
            }
 
            if (max_ending_here < 0)
            {
                max_ending_here = 0;
                s = i + 1;
            }
        }
        System.out.println("Maximum contiguous sum is "
                           + max_so_far);
        System.out.println("Starting index " + start);
        System.out.println("Ending index " + end);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
        int n = a.length;
        maxSubArraySum(a, n);
    }
}
 
// This code is contributed by  prerna saini

Python3




# Python program to print largest contiguous array sum
 
from sys import maxsize
 
# Function to find the maximum contiguous subarray
# and print its starting and end index
def maxSubArraySum(a,size):
 
    max_so_far = -maxsize - 1
    max_ending_here = 0
    start = 0
    end = 0
    s = 0
 
    for i in range(0,size):
 
        max_ending_here += a[i]
 
        if max_so_far < max_ending_here:
            max_so_far = max_ending_here
            start = s
            end = i
 
        if max_ending_here < 0:
            max_ending_here = 0
            s = i+1
 
    print ("Maximum contiguous sum is %d"%(max_so_far))
    print ("Starting Index %d"%(start))
    print ("Ending Index %d"%(end))
 
# Driver program to test maxSubArraySum
a = [-2, -3, 4, -1, -2, 1, 5, -3]
maxSubArraySum(a,len(a))

C#




// C# program to print largest
// contiguous array sum
using System;
 
class GFG
{
    static void maxSubArraySum(int []a,
                               int size)
    {
        int max_so_far = int.MinValue,
        max_ending_here = 0, start = 0,
        end = 0, s = 0;
 
        for (int i = 0; i < size; i++)
        {
            max_ending_here += a[i];
 
            if (max_so_far < max_ending_here)
            {
                max_so_far = max_ending_here;
                start = s;
                end = i;
            }
 
            if (max_ending_here < 0)
            {
                max_ending_here = 0;
                s = i + 1;
            }
        }
        Console.WriteLine("Maximum contiguous " +
                         "sum is " + max_so_far);
        Console.WriteLine("Starting index " +
                                      start);
        Console.WriteLine("Ending index " +
                                      end);
    }
 
    // Driver code
    public static void Main()
    {
        int []a = {-2, -3, 4, -1,
                   -2, 1, 5, -3};
        int n = a.Length;
        maxSubArraySum(a, n);
    }
}
 
// This code is contributed
// by anuj_67.

PHP




<?php
// PHP program to print largest
// contiguous array sum
 
function maxSubArraySum($a, $size)
{
    $max_so_far = PHP_INT_MIN;
    $max_ending_here = 0;
    $start = 0;
    $end = 0;
    $s = 0;
 
    for ($i = 0; $i < $size; $i++)
    {
        $max_ending_here += $a[$i];
 
        if ($max_so_far < $max_ending_here)
        {
            $max_so_far = $max_ending_here;
            $start = $s;
            $end = $i;
        }
 
        if ($max_ending_here < 0)
        {
            $max_ending_here = 0;
            $s = $i + 1;
        }
    }
    echo "Maximum contiguous sum is ".
                     $max_so_far."\n";
    echo "Starting index ". $start . "\n".
            "Ending index " . $end . "\n";
}
 
// Driver Code
$a = array(-2, -3, 4, -1, -2, 1, 5, -3);
$n = sizeof($a);
$max_sum = maxSubArraySum($a, $n);
 
// This code is contributed
// by ChitraNayal
?>

Output: 

Maximum contiguous sum is 7
Starting index 2
Ending index 6

Time Complexity: O(n)

Auxiliary Space: O(1)

Now try the below question 
Given an array of integers (possibly some elements negative), write a C program to find out the *maximum product* possible by multiplying ‘n’ consecutive integers in the array where n ≤ ARRAY_SIZE. Also, print the starting point of the maximum product subarray.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :