Largest subset whose all elements are Fibonacci numbers

Given an array with positive number the task is that we find largest subset from array that contain elements which are Fibonacci numbers.

Asked in Facebook

Examples :



Input : arr[] = {1, 4, 3, 9, 10, 13, 7};
Output : subset[] = {1, 3, 13}
The output three numbers are Fibonacci
numbers.

Input  : arr[] = {0, 2, 8, 5, 2, 1, 4, 
                  13, 23};
Output : subset[] = {0, 2, 8, 5, 2, 1, 
                    13, 23}

A simple solution is to iterate through all elements of given array. For every number, check if it is Fibonacci or not. If yes, add it to the result.

Below is an efficient solution based on hashing.

  1. Find max in the array
  2. Generate Fibonacci numbers till the max and store it in hash table.
  3. Traverse array again if the number is present in hash table then add it to the result.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find largest Fibonacci subset
#include<bits/stdc++.h>
using namespace std;
  
// Prints largest subset of an array whose
// all elements are fibonacci numbers
void findFibSubset(int arr[], int n)
{
    // Find maximum element in arr[]
    int max = *std::max_element(arr, arr+n);
  
    // Generate all Fibonacci numbers till
    // max and store them in hash.
    int a = 0, b = 1;
    unordered_set<int> hash;
    hash.insert(a);
    hash.insert(b);
    while (b < max)
    {
        int c = a + b;
        a = b;
        b = c;
        hash.insert(b);
    }
  
    // Npw iterate through all numbers and
    // quickly check for Fibonacci using
    // hash.
    for (int i=0; i<n; i++)
        if (hash.find(arr[i]) != hash.end())
            printf("%d ", arr[i]);
}
  
// Driver code
int main()
{
    int arr[] = {4, 2, 8, 5, 20, 1, 40, 13, 23};
    int n = sizeof(arr)/sizeof(arr[0]);
    findFibSubset(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find 
// largest Fibonacci subset
import java.util.*;
  
class GFG
{
    // Prints largest subset of an array whose
    // all elements are fibonacci numbers
    public static void findFibSubset(Integer[] x)
    {
        Integer max = Collections.max(Arrays.asList(x));
        List<Integer> fib = new ArrayList<Integer>(); 
        List<Integer> result = new ArrayList<Integer>();
          
        // Generate all Fibonacci numbers 
        // till max and store them
        Integer a = 0;
        Integer b = 1;
        while (b < max){
            Integer c = a + b;
            a=b;
            b=c;
            fib.add(c);
        }
      
        // Now iterate through all numbers and
        // quickly check for Fibonacci
        for (Integer i = 0; i < x.length; i++){
        if(fib.contains(x[i])){
            result.add(x[i]); 
        }     
        }
        System.out.println(result);
    }
  
    // Driver code
    public static void main(String args[])
    {
        Integer[] a = {4, 2, 8, 5, 20, 1, 40, 13, 23};
        findFibSubset(a);
    }
}
  
// This code is contributed by prag93

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# python3 program to find largest Fibonacci subset
   
# Prints largest subset of an array whose
# all elements are fibonacci numbers
def findFibSubset(arr, n):
  
    # Find maximum element in arr[]
    m= max(arr)
   
    # Generate all Fibonacci numbers till
    # max and store them in hash.
    a = 0
    b = 1
    hash = []
    hash.append(a)
    hash.append(b)
    while (b < m):
      
        c = a + b
        a = b
        b = c
        hash.append(b)
      
   
    # Npw iterate through all numbers and
    # quickly check for Fibonacci using
    # hash.
    for i in range (n):
        if arr[i] in hash :
            print( arr[i],end=" ")
   
# Driver code
if __name__ == "__main__":
  
    arr = [4, 2, 8, 5, 20, 1, 40, 13, 23]
    n = len(arr)
    findFibSubset(arr, n)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find 
// largest Fibonacci subset
using System;
using System.Linq;
using System.Collections.Generic; 
      
class GFG
{
    // Prints largest subset of an array whose
    // all elements are fibonacci numbers
    public static void findFibSubset(int[] x)
    {
        int max = x.Max();
        List<int> fib = new List<int>(); 
        List<int> result = new List<int>();
          
        // Generate all Fibonacci numbers 
        // till max and store them
        int a = 0;
        int b = 1;
        while (b < max)
        {
            int c = a + b;
            a = b;
            b = c;
            fib.Add(c);
        }
      
        // Now iterate through all numbers and
        // quickly check for Fibonacci
        for (int i = 0; i < x.Length; i++)
        {
            if(fib.Contains(x[i]))
            {
                result.Add(x[i]); 
            }     
        }
        foreach(int i in result)
            Console.Write(i + " ");
    }
  
    // Driver code
    public static void Main(String []args)
    {
        int[] a = {4, 2, 8, 5, 20, 1, 40, 13, 23};
        findFibSubset(a);
    }
}
  
// This code is contributed by PrinciRaj1992 

chevron_right



Output:

2 8 5 1 13 

Reference :
https://www.careercup.com/question?id=5154130839470080

This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up