Largest subset having with sum less than equal to sum of respective indices

Given an array arr[], the task is to find the length of the largest subset with the sum of elements less than or equal to the sum of its indexes(1-based indexing).
Examples: 

Input: arr[] = {1, 7, 3, 5, 9, 6, 6} 
Output:
Explanation: 
Largest Subset is {1, 3, 5, 6, 6} 
Sum of indexes = 1 + 3 + 4 + 6 + 7 = 21 
Sum of elements = 1 + 3 + 5 + 6 + 6 = 21

Input: arr[] = {4, 1, 6, 7, 8, 2} 
Output:
 

Naive Approach: 
The simplest approach to solve the problem is to generate all possible subsets and calculate the length of the subsets which have the sum of elements less than or equal to the sum of its respective indices. 
Time Complexity: O(N*2N
Auxiliary Space: O(N)

Efficient Approach: 
Follow the steps below to solve the problem: 

  • Iterate over all indices and consider only those indices whose values are greater than or equal to the values of the respective values stored in them.
  • Keep updating the sum of the differences obtained in the above step.
  • For the remaining elements, store their differences with their respective indexes. Sort the differences.
  • Include elements into the subset one by one and subtract the difference from sum. Keep including until an element is encountered whose difference with its index exceeds remaining sum or all array elements have already been included.

Below is the implementation of the above approach:



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the length
// of the longest subset
int findSubset(int* a, int n)
{
    // Stores the sum of differences
    // between elements and
    // their respective index
    int sum = 0;
  
    // Stores the size of
    // the subset
    int cnt = 0;
  
    vector<int> v;
  
    // Iterate over the array
    for (int i = 1; i <= n; i++) {
  
        // If an element which is
        // smaller than or equal
        // to its index is encountered
        if (a[i - 1] - i <= 0) {
  
            // Increase count and sum
            sum += a[i - 1] - i;
            cnt += 1;
        }
  
        // Store the difference with
        // index of the remaining
        // elements
        else {
            v.push_back(a[i - 1] - i);
        }
    }
  
    // Sort the differences
    // in increasing order
    sort(v.begin(), v.end());
  
    int ptr = 0;
  
    // Include the differences while
    // sum remains positive or
    while (ptr < v.size()
           && sum + v[ptr] <= 0) {
        cnt += 1;
        ptr += 1;
        sum += v[ptr];
    }
  
    // Return the size
    return cnt;
}
  
// Driver Code
int main()
{
    int arr[] = { 4, 1, 6, 7,
                  8, 2 };
  
    int n = sizeof(arr)
            / sizeof(arr[0]);
  
    // Function Calling
    cout << findSubset(arr, n)
         << endl;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement 
// the above approach
import java.util.*; 
class GFG{
      
// Function to find the length 
// of the longest subset 
public static int findSubset(int[] a, int n) 
      
    // Stores the sum of differences 
    // between elements and 
    // their respective index 
    int sum = 0
  
    // Stores the size of 
    // the subset 
    int cnt = 0
  
    Vector<Integer> v = new Vector<>(); 
  
    // Iterate over the array 
    for(int i = 1; i <= n; i++)
    
          
        // If an element which is 
        // smaller than or equal 
        // to its index is encountered 
        if (a[i - 1] - i <= 0)
        
              
            // Increase count and sum 
            sum += a[i - 1] - i; 
            cnt += 1
        
  
        // Store the difference with 
        // index of the remaining 
        // elements 
        else
        
            v.add(a[i - 1] - i); 
        
    
  
    // Sort the differences 
    // in increasing order 
    Collections.sort(v); 
  
    int ptr = 0
  
    // Include the differences while 
    // sum remains positive or 
    while (ptr < v.size() && 
           sum + v.get(ptr) <= 0)
    
        cnt += 1
        ptr += 1
        sum += v.get(ptr); 
    
  
    // Return the size 
    return cnt; 
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 4, 1, 6, 7, 8, 2 }; 
    int n = arr.length; 
  
    // Function Calling 
    System.out.println(findSubset(arr, n)); 
}
}
  
// This code is contributed by divyeshrabadiya07

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement 
// the above approach
using System;
using System.Collections.Generic;
  
class GFG{
      
// Function to find the length 
// of the longest subset 
public static int findSubset(int[] a, int n) 
      
    // Stores the sum of differences 
    // between elements and 
    // their respective index 
    int sum = 0; 
  
    // Stores the size of 
    // the subset 
    int cnt = 0; 
  
    List<int> v = new List<int>(); 
  
    // Iterate over the array 
    for(int i = 1; i <= n; i++)
    
          
        // If an element which is 
        // smaller than or equal 
        // to its index is encountered 
        if (a[i - 1] - i <= 0)
        
              
            // Increase count and sum 
            sum += a[i - 1] - i; 
            cnt += 1; 
        
  
        // Store the difference with 
        // index of the remaining 
        // elements 
        else
        
            v.Add(a[i - 1] - i); 
        
    
  
    // Sort the differences 
    // in increasing order 
    v.Sort(); 
  
    int ptr = 0; 
  
    // Include the differences while 
    // sum remains positive or 
    while (ptr < v.Count && 
           sum + v[ptr] <= 0)
    
        cnt += 1; 
        ptr += 1; 
        sum += v[ptr]; 
    
  
    // Return the size 
    return cnt; 
  
// Driver code
public static void Main(String[] args)
{
    int []arr = { 4, 1, 6, 7, 8, 2 }; 
    int n = arr.Length; 
  
    // Function calling 
    Console.WriteLine(findSubset(arr, n)); 
}
}
  
// This code is contributed by amal kumar choubey

chevron_right


Output: 

3

Time Complexity:O(N) 
Space Complexity:O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.