Skip to content
Related Articles

Related Articles

Improve Article

Largest right circular cylinder within a frustum

  • Last Updated : 17 Mar, 2021

Given a frustum of height h  , top-radius r  & base-radius R  . The task is to find the volume of biggest right circular cylinder that can be inscribed within it.
Examples: 
 

Input  : r = 5, R = 10, h = 4
Output : 314

Input : r = 7, R = 11, h = 6
Output : 923.16

 

 

Approach
Let: 
 



  • The height of the cylinder = h1
  • Radius of the cylinder = r1

From the figure it is clear that: 
 

  • Height of the cylinder = Height of frustum
  • Radius of the cylinder = Rop-radius of the frustum

So, 
 

h1 = h
r1 = r

Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest right circular cylinder
// that can be fit within a frustum
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest right circular cylinder
float cyl(float r, float R, float h)
{
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    float r1 = r;
    // height of right circular cylinder
    float h1 = h;
    // volume of right circular cylinder
    float V = 3.14 * pow(r1, 2) * h1;
 
    return V;
}
 
// Driver code
int main()
{
    float r = 7, R = 11, h = 6;
 
    cout << cyl(r, R, h) << endl;
 
    return 0;
}

Java




// Java Program to find the biggest right circular cylinder
// that can be fit within a frustum
 
import java.io.*;
 
class GFG {
 
 
// Function to find the biggest right circular cylinder
 static float cyl(float r, float R, float h)
{
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    float r1 = r;
    // height of right circular cylinder
    float h1 = h;
    // volume of right circular cylinder
    float V = (float)(3.14 * Math.pow(r1, 2) * h1);
 
    return V;
}
 
// Driver code
    public static void main (String[] args) {
            float r = 7, R = 11, h = 6;
 
    System.out.print( cyl(r, R, h));
    }
}
// This code is contributed by anuj_67..

Python3




# Python3 Program to find the biggest right circular cylinder
# that can be fit within a frustum
 
# Function to find the biggest right circular cylinder
def cyl(r, R, h) :
 
    # radii and height cannot be negative
    if (h < 0 and r < 0 and R < 0) :
        return -1
 
    # radius of right circular cylinder
    r1 = r
    # height of right circular cylinder
    h1 = h
    # volume of right circular cylinder
    V = 3.14 * pow(r1, 2) * h1
 
    return round(V,2)
 
 
# Driver code
if __name__ == "__main__" :
 
    r, R, h = 7, 11, 6
 
    print(cyl(r, R, h))
 
# This code is contributed by Ryuga

C#




// C# Program to find the biggest right circular cylinder
// that can be fit within a frustum
using System;
 
class GFG {
 
 
// Function to find the biggest right circular cylinder
static float cyl(float r, float R, float h)
{
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    float r1 = r;
    // height of right circular cylinder
    float h1 = h;
    // volume of right circular cylinder
    float V = (float)(3.14 * Math.Pow(r1, 2) * h1);
 
    return V;
}
 
// Driver code
    public static void Main () {
            float r = 7, R = 11, h = 6;
 
    Console.WriteLine( cyl(r, R, h));
    }
}
// This code is contributed by anuj_67..

PHP




<?php
// PHP Program to find the biggest
// right circular cylinder that can
// be fit within a frustum
 
// Function to find the biggest
// right circular cylinder
function cyl($r, $R, $h)
{
    // radii and height cannot be negative
    if ($h < 0 && $r < 0 && $R < 0)
        return -1;
 
    // radius of right circular cylinder
    $r1 = $r;
     
    // height of right circular cylinder
    $h1 = $h;
     
    // volume of right circular cylinder
    $V = (3.14 * pow($r1, 2) * $h1);
 
    return $V;
}
 
// Driver code
$r = 7; $R = 11; $h = 6;
 
echo cyl($r, $R, $h);
     
// This code is contributed
// by Mukul Singh.

Javascript




<script>
// javascript Program to find the biggest right circular cylinder
// that can be fit within a frustum
 
// Function to find the biggest right circular cylinder
 function cyl(r , R , h)
{
 
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    var r1 = r;
     
    // height of right circular cylinder
    var h1 = h;
     
    // volume of right circular cylinder
    var V = (3.14 * Math.pow(r1, 2) * h1);
    return V;
}
 
// Driver code
var r = 7, R = 11, h = 6;
document.write( cyl(r, R, h).toFixed(5));
 
// This code is contributed by Princi Singh
</script>
Output: 
923.16

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :