Skip to content
Related Articles

Related Articles

Largest right circular cone that can be inscribed within a sphere which is inscribed within a cube
  • Last Updated : 18 Mar, 2021
GeeksforGeeks - Summer Carnival Banner

Given a cube of side length a, which inscribes a sphere which in turn inscribes a right circular cone. The task is to find the largest possible volume of this cone.
Examples: 
 

Input:  a = 5
Output: 58.1481

Input: a = 8
Output: 238.175

 

Approach
Let, the height of right circular cone = h
Radius of the cone = r 
Radius of the sphere = R 
We, know radius of the sphere inside the cube, r = a/2. Please refer ( Largest sphere that can be inscribed inside a cube)
Also, height of cone inside the sphere, h = 4r/3
radius of cone inside the sphere, r = 2√2r/3. Please refer (Largest right circular cone that can be inscribed within a sphere)
So, height of the cone inside the sphere which in turn is inscribed within a cube, h = 2a/3
Radius of the cone inside the sphere which in turn is inscribed within a cube, r = √2a/3.
Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest right circular cone
// that can be inscribed within a right circular cone
// which in turn is inscribed within a cube
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest right circular cone
float cone(float a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // radius of right circular cone
    float r = (a * sqrt(2)) / 3;
 
    // height of right circular cone
    float h = (2 * a) / 3;
 
    // volume of right circular cone
    float V = 3.14 * pow(r, 2) * h;
 
    return V;
}
 
// Driver code
int main()
{
    float a = 5;
    cout << cone(a) << endl;
 
    return 0;
}

Java




// Java Program to find the biggest right circular cone
// that can be inscribed within a right circular cone
// which in turn is inscribed within a cube
import java.io.*;
 
class GFG
{
     
// Function to find the biggest right circular cone
static float cone(float a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // radius of right circular cone
    float r = (float) (a * Math.sqrt(2)) / 3;
 
    // height of right circular cone
    float h = (2 * a) / 3;
 
    // volume of right circular cone
    float V = (float)(3.14 *Math. pow(r, 2) * h);
 
    return V;
}
 
// Driver code
public static void main (String[] args)
{
    float a = 5;
    System.out.println( cone(a));
}
}
 
// This code is contributed by anuj_67..

Python3




# Python3 Program to find the biggest right
# circular cone that can be inscribed within
# a right circular cone which in turn is
# inscribed within a cube
import math
 
# Function to find the biggest
# right circular cone
def cone(a):
 
    # side cannot be negative
    if (a < 0):
        return -1;
 
    # radius of right circular cone
    r = (a * math.sqrt(2)) / 3;
 
    # height of right circular cone
    h = (2 * a) / 3;
 
    # volume of right circular cone
    V = 3.14 * math.pow(r, 2) * h;
 
    return V;
 
# Driver code
a = 5;
print(cone(a));
 
# This code is contributed by
# Shivi_Aggarwal

C#




// C# Program to find the biggest
// right circular cone that can be
// inscribed within a right circular cone
// which in turn is inscribed within a cube
using System;
 
class GFG
{
     
// Function to find the biggest
// right circular cone
static double cone(double a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // radius of right circular cone
    double r = (double) (a * Math.Sqrt(2)) / 3;
 
    // height of right circular cone
    double h = (2 * a) / 3;
 
    // volume of right circular cone
    double V = (double)(3.14 * Math.Pow(r, 2) * h);
 
    return Math.Round(V,4);
}
 
// Driver code
static void Main ()
{
    double a = 5;
    Console.WriteLine(cone(a));
}
}
 
// This code is contributed by chandan_jnu

PHP




<?php
// PHP Program to find the biggest right
// circular cone that can be inscribed
// within a right circular cone which in
// turn is inscribed within a cube
 
// Function to find the biggest
// right circular cone
function cone($a)
{
 
    // side cannot be negative
    if ($a < 0)
        return -1;
 
    // radius of right circular cone
    $r = ($a * sqrt(2)) / 3;
 
    // height of right circular cone
    $h = (2 * $a) / 3;
 
    // volume of right circular cone
    $V = 3.14 * pow($r, 2) * $h;
 
    return $V;
}
 
// Driver code
$a = 5;
echo round(cone($a), 4);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
 
// javascript Program to find the biggest right circular cone
// that can be inscribed within a right circular cone
// which in turn is inscribed within a cube
 
// Function to find the biggest right circular cone
function cone(a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // radius of right circular cone
    var r =  (a * Math.sqrt(2)) / 3;
 
    // height of right circular cone
    var h = (2 * a) / 3;
 
    // volume of right circular cone
    var V = (3.14 *Math. pow(r, 2) * h);
 
    return V;
}
 
// Driver code
var a = 5;
document.write( cone(a).toFixed(5));
 
 
// This code is contributed by Amit Katiyar
 
</script>
Output: 
58.1481

 

Want to learn from the best curated videos and practice problems, check out the C++ Foundation Course for Basic to Advanced C++ and C++ STL Course for foundation plus STL.



My Personal Notes arrow_drop_up
Recommended Articles
Page :