Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Largest palindrome which is product of two n-digit numbers

  • Difficulty Level : Medium
  • Last Updated : 22 Apr, 2021

Given a value n, find out the largest palindrome number which is product of two n digit numbers.

Examples : 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Input  : n = 2
Output : 9009 
9009 is the largest number which is product of two 
2-digit numbers. 9009 = 91*99.

Input : n = 3
Output : 906609

Below are steps to find the required number. 

  1. Find a lower limit on n digit numbers. For example, for n = 2, lower_limit is 10.
  2. Find an upper limit on n digit numbers. For example, for n = 2, upper_limit is 99.
  3. Consider all pairs of numbers where ever number lies in range [lower_limit, upper_limit]

Below is the implementation of above steps. 

C++




// C++ problem to find out the
// largest palindrome number which
// is product of two n digit numbers
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate largest
// palindrome which is product of
// two n-digits numbers
int larrgestPalindrome(int n)
{
    int upper_limit = pow(10,n) - 1;
 
    
 
    // largest number of n-1 digit.
    // One plus this number is lower
    // limit which is product of two numbers.
    int lower_limit = 1 + upper_limit / 10;
 
    // Initialize result
    int max_product = 0;
    for (int i = upper_limit;
             i >= lower_limit;
             i--)
    {
        for (int j = i; j >= lower_limit; j--)
        {
            // calculating product of
            // two n-digit numbers
            int product = i * j;
            if (product < max_product)
                break;
            int number = product;
            int reverse = 0;
 
            // calculating reverse of
            // product to check whether
            // it is palindrome or not
            while (number != 0)
            {
                reverse = reverse * 10 +
                          number % 10;
                number /= 10;
            }
 
            // update new product if exist
            // and if greater than previous one
            if (product == reverse &&
                product > max_product)
                 
                max_product = product;
        }
    }
    return max_product;
}
 
// Driver code
int main()
{
    int n = 2;
    cout << larrgestPalindrome(n);
    return 0;
}

Java




// Java problem to find out the
// largest palindrome number
// which is product of two
// n digit numbers.
import java.lang.Math;
 
class GFG
{
    // Function to calculate largest
    // palindrome which isproduct of
    // two n-digits numbers
    static int larrgestPalindrome(int n)
    {
        int upper_limit = (int)Math.pow(10, n) - 1;
     
     
        // largest number of n-1 digit.
        // One plus this number
        // is lower limit which is
        // product of two numbers.
        int lower_limit = 1 + upper_limit / 10;
     
        // Initialize result
        int max_product = 0;
         
        for (int i = upper_limit; i >= lower_limit; i--)
        {
            for (int j = i; j >= lower_limit; j--)
            {
                // calculating product of two
                // n-digit numbers
                int product = i * j;
                if (product < max_product)
                    break;
                int number = product;
                int reverse = 0;
     
                // calculating reverse of product
                // to check whether it is
                // palindrome or not
                while (number != 0)
                {
                    reverse = reverse * 10 + number % 10;
                    number /= 10;
                }
     
                // update new product if exist and if
                // greater than previous one
                if (product == reverse && product > max_product)
                    max_product = product;
            }
        }
        return max_product;
    }
     
    // Driver code
    public static void main (String[] args)
    {
     
        int n = 2;
        System.out.print(larrgestPalindrome(n));
    }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python problem to find
# out the largest palindrome
# number which is product of
# two n digit numbers.
 
# Function to calculate largest
# palindrome which is
#  product of two n-digits numbers
    
def larrgestPalindrome(n):
 
    upper_limit = (10**(n))-1
      
    # largest number of n-1 digit.
    # One plus this number
    # is lower limit which is
    # product of two numbers.
    lower_limit = 1 + upper_limit//10
  
    max_product = 0 # Initialize result
    for i in range(upper_limit,lower_limit-1, -1):
     
        for j in range(i,lower_limit-1,-1):
         
            # calculating product of
            # two n-digit numbers
            product = i * j
            if (product < max_product):
                break
            number = product
            reverse = 0
  
            # calculating reverse of
            # product to check
            # whether it is palindrome or not
            while (number != 0):
             
                reverse = reverse * 10 + number % 10
                number =number // 10
             
  
             # update new product if exist and if
             # greater than previous one
            if (product == reverse and product > max_product):
                max_product = product
         
     
    return max_product
 
# Driver code
 
n = 2
print(larrgestPalindrome(n))
 
# This code is contributed
# by Anant Agarwal.

C#




// C# problem to find out the
// largest palindrome number
// which is product of two
// n digit numbers.
using System;
 
class GFG
{
    // Function to calculate largest
    // palindrome which isproduct of
    // two n-digits numbers
    static int larrgestPalindrome(int n)
    {
        int upper_limit = (int)Math.Pow(10, n) - 1;
     
     
        // largest number of n-1 digit.
        // One plus this number
        // is lower limit which is
        // product of two numbers.
        int lower_limit = 1 + upper_limit / 10;
     
        // Initialize result
        int max_product = 0;
         
        for (int i = upper_limit; i >= lower_limit; i--)
        {
            for (int j = i; j >= lower_limit; j--)
            {
                // calculating product of two
                // n-digit numbers
                int product = i * j;
                if (product < max_product)
                    break;
                int number = product;
                int reverse = 0;
     
                // calculating reverse of product
                // to check whether it is
                // palindrome or not
                while (number != 0)
                {
                    reverse = reverse * 10 + number % 10;
                    number /= 10;
                }
     
                // update new product if exist and if
                // greater than previous one
                if (product == reverse && product > max_product)
                    max_product = product;
            }
        }
        return max_product;
    }
     
    // Driver code
    public static void Main ()
    {
     
        int n = 2;
        Console.Write(larrgestPalindrome(n));
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// PHP problem to find out
// the largest palindrome
// number which is product
// of two n digit numbers
 
// Function to calculate
// largest palindrome which
// is product of two n-digit numbers
function larrgestPalindrome($n)
{
    $upper_limit = 0;
 
    // Loop to calculate upper bound
    // (largest number of n-digit)
    for ($i = 1; $i <= $n; $i++)
    {
        $upper_limit *= 10;
        $upper_limit += 9;
    }
 
    // largest number of n-1 digit
    // One plus this number
    // is lower limit which is
    // product of two numbers.
    $lower_limit = 1 + (int)($upper_limit / 10);
 
    // Initialize result
    $max_product = 0;
    for ($i = $upper_limit;
         $i >= $lower_limit;
         $i--)
    {
        for ($j = $i;
             $j >= $lower_limit;
             $j--)
        {
            // calculating product of
            // two n-digit numbers
            $product = $i * $j;
            if ($product < $max_product)
                break;
            $number = $product;
            $reverse = 0;
 
            // calculating reverse of
            // product to check whether
            // it is palindrome or not
            while ($number != 0)
            {
                $reverse = $reverse * 10 +
                           $number % 10;
                $number = (int)($number / 10);
            }
 
            // update new product if exist
            // and if greater than previous one
            if ($product == $reverse &&
                $product > $max_product)
                 
                $max_product = $product;
        }
    }
    return $max_product;
}
 
// Driver code
$n = 2;
echo(larrgestPalindrome($n));
 
// This code is contributed by Ajit.
?>

Javascript




<script>
 
    // Javascript problem to find out the
    // largest palindrome number
    // which is product of two
    // n digit numbers.
     
    // Function to calculate largest
    // palindrome which isproduct of
    // two n-digits numbers
    function larrgestPalindrome(n)
    {
        let upper_limit = Math.pow(10, n) - 1;
      
      
        // largest number of n-1 digit.
        // One plus this number
        // is lower limit which is
        // product of two numbers.
        let lower_limit = 1 +
        parseInt(upper_limit / 10, 10);
      
        // Initialize result
        let max_product = 0;
          
        for (let i = upper_limit; i >= lower_limit; i--)
        {
            for (let j = i; j >= lower_limit; j--)
            {
                // calculating product of two
                // n-digit numbers
                let product = i * j;
                if (product < max_product)
                    break;
                let number = product;
                let reverse = 0;
      
                // calculating reverse of product
                // to check whether it is
                // palindrome or not
                while (number != 0)
                {
                    reverse = reverse * 10 + number % 10;
                    number = parseInt(number / 10, 10);
                }
      
                // update new product if exist and if
                // greater than previous one
                if (product == reverse &&
                product > max_product)
                    max_product = product;
            }
        }
        return max_product;
    }
     
    let n = 2;
      document.write(larrgestPalindrome(n));
     
</script>

Output :

9009

The approach used in this post is simple and straightforward. Please comment if you find a better approach.
This article is contributed by Shivam Pradhan(anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!