Skip to content
Related Articles

Related Articles

Improve Article

Largest number less than X having at most K set bits

  • Last Updated : 11 Jun, 2021

Given an integer X > 1 and an integer K > 0, the task is to find the greatest odd number < X such that the number of 1’s in its binary representation is at most K.
Examples: 
 

Input: X = 10, K = 2 
Output: 10
Input: X = 29, K = 2 
Output: 24 
 

 

Naive Approach: Starting from X – 1 check all the numbers below X which have at most K set bits, the first number satisfying the condition is the required answer.
Efficient Approach: is to count the set bits. If the count is less than or equal to K, return X. Otherwise, keep removing rightmost set bit while count – k does not become 0.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the greatest number <= X
// having at most K set bits.
int greatestKBits(int X, int K)
{
    int set_bit_count = __builtin_popcount(X);
    if (set_bit_count <= K)
        return X;
 
    // Remove rightmost set bits one
    // by one until we count becomes k
    int diff = set_bit_count - K;
    for (int i = 0; i < diff; i++)
        X &= (X - 1);
 
    // Return the required number
    return X;
}
 
// Driver code
int main()
{
    int X = 21, K = 2;
    cout << greatestKBits(X, K);
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
   
class GFG {
 
    // Function to return the greatest number <= X
    // having at most K set bits.
     int greatestKBits(int X, int K)
     {
       int set_bit_count = Integer.bitCount(X);
       if (set_bit_count <= K)
            return X;
 
        // Remove rightmost set bits one
        // by one until we count becomes k
        int diff = set_bit_count - K;
        for (int i = 0; i < diff; i++)
            X &= (X - 1);
 
        // Return the required number
        return X;
    }
 
// Driver code
public static void main (String[] args)
{
    int X = 21, K = 2;
    GFG g=new GFG();
      System.out.print(g.greatestKBits(X, K));
}
 
//This code is contributed by Shivi_Aggarwal
}

Python3




# Python 3 implementation of the approach
 
# Function to return the greatest
# number <= X having at most K set bits.
def greatestKBits(X, K):
    set_bit_count = bin(X).count('1')
    if (set_bit_count <= K):
        return X
 
    # Remove rightmost set bits one
    # by one until we count becomes k
    diff = set_bit_count - K
    for i in range(0, diff, 1):
        X &= (X - 1)
 
    # Return the required number
    return X
 
# Driver code
if __name__ == '__main__':
    X = 21
    K = 2
    print(greatestKBits(X, K))
     
# This code is contributed by
# Shashank_Sharma

C#




// C# implementation of the above approach
using System;
 
class GFG
{
    // Function to get no of set
    // bits in binary representation
    // of positive integer n
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
     
    // Function to return the greatest number <= X
    // having at most K set bits.
    static int greatestKBits(int X, int K)
    {
        int set_bit_count = countSetBits(X);
        if (set_bit_count <= K)
        return X;
 
        // Remove rightmost set bits one
        // by one until we count becomes k
        int diff = set_bit_count - K;
        for (int i = 0; i < diff; i++)
            X &= (X - 1);
 
        // Return the required number
        return X;
    }
 
    // Driver code
    public static void Main()
    {
        int X = 21, K = 2;
        Console.WriteLine(greatestKBits(X, K));
         
    }
}
 
// This code is contributed by Ryuga

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to get no of set
// bits in binary representation
// of positive integer n
function countSetBits( n)
{
    let count = 0;
    while (n > 0)
    {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
     
// Function to return the greatest number <= X
// having at most K set bits.
function greatestKBits( X, K)
{
    let set_bit_count = countSetBits(X);
    if (set_bit_count <= K)
    return X;
 
    // Remove rightmost set bits one
    // by one until we count becomes k
    let diff = set_bit_count - K;
    for (let i = 0; i < diff; i++)
        X &= (X - 1);
 
    // Return the required number
    return X;
}
 
 
// Driver Code
 
let X = 21, K = 2;
document.write(greatestKBits(X, K));
 
</script>
Output: 
20

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :