Skip to content
Related Articles

Related Articles

Largest number less than X having at most K set bits

View Discussion
Improve Article
Save Article
  • Last Updated : 11 Jun, 2021
View Discussion
Improve Article
Save Article

Given an integer X > 1 and an integer K > 0, the task is to find the greatest odd number < X such that the number of 1’s in its binary representation is at most K.
Examples: 
 

Input: X = 10, K = 2 
Output: 10
Input: X = 29, K = 2 
Output: 24 
 

 

Naive Approach: Starting from X – 1 check all the numbers below X which have at most K set bits, the first number satisfying the condition is the required answer.
Efficient Approach: is to count the set bits. If the count is less than or equal to K, return X. Otherwise, keep removing rightmost set bit while count – k does not become 0.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the greatest number <= X
// having at most K set bits.
int greatestKBits(int X, int K)
{
    int set_bit_count = __builtin_popcount(X);
    if (set_bit_count <= K)
        return X;
 
    // Remove rightmost set bits one
    // by one until we count becomes k
    int diff = set_bit_count - K;
    for (int i = 0; i < diff; i++)
        X &= (X - 1);
 
    // Return the required number
    return X;
}
 
// Driver code
int main()
{
    int X = 21, K = 2;
    cout << greatestKBits(X, K);
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
   
class GFG {
 
    // Function to return the greatest number <= X
    // having at most K set bits.
     int greatestKBits(int X, int K)
     {
       int set_bit_count = Integer.bitCount(X);
       if (set_bit_count <= K)
            return X;
 
        // Remove rightmost set bits one
        // by one until we count becomes k
        int diff = set_bit_count - K;
        for (int i = 0; i < diff; i++)
            X &= (X - 1);
 
        // Return the required number
        return X;
    }
 
// Driver code
public static void main (String[] args)
{
    int X = 21, K = 2;
    GFG g=new GFG();
      System.out.print(g.greatestKBits(X, K));
}
 
//This code is contributed by Shivi_Aggarwal
}

Python3




# Python 3 implementation of the approach
 
# Function to return the greatest
# number <= X having at most K set bits.
def greatestKBits(X, K):
    set_bit_count = bin(X).count('1')
    if (set_bit_count <= K):
        return X
 
    # Remove rightmost set bits one
    # by one until we count becomes k
    diff = set_bit_count - K
    for i in range(0, diff, 1):
        X &= (X - 1)
 
    # Return the required number
    return X
 
# Driver code
if __name__ == '__main__':
    X = 21
    K = 2
    print(greatestKBits(X, K))
     
# This code is contributed by
# Shashank_Sharma

C#




// C# implementation of the above approach
using System;
 
class GFG
{
    // Function to get no of set
    // bits in binary representation
    // of positive integer n
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
     
    // Function to return the greatest number <= X
    // having at most K set bits.
    static int greatestKBits(int X, int K)
    {
        int set_bit_count = countSetBits(X);
        if (set_bit_count <= K)
        return X;
 
        // Remove rightmost set bits one
        // by one until we count becomes k
        int diff = set_bit_count - K;
        for (int i = 0; i < diff; i++)
            X &= (X - 1);
 
        // Return the required number
        return X;
    }
 
    // Driver code
    public static void Main()
    {
        int X = 21, K = 2;
        Console.WriteLine(greatestKBits(X, K));
         
    }
}
 
// This code is contributed by Ryuga

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to get no of set
// bits in binary representation
// of positive integer n
function countSetBits( n)
{
    let count = 0;
    while (n > 0)
    {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
     
// Function to return the greatest number <= X
// having at most K set bits.
function greatestKBits( X, K)
{
    let set_bit_count = countSetBits(X);
    if (set_bit_count <= K)
    return X;
 
    // Remove rightmost set bits one
    // by one until we count becomes k
    let diff = set_bit_count - K;
    for (let i = 0; i < diff; i++)
        X &= (X - 1);
 
    // Return the required number
    return X;
}
 
 
// Driver Code
 
let X = 21, K = 2;
document.write(greatestKBits(X, K));
 
</script>

Output: 

20

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!