Open In App
Related Articles

Largest number that divides x and is co-prime with y

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two positive numbers x and y. Find the maximum valued integer a such that: 
 

  1. a divides x i.e. x % a = 0
  2. a and y are co-prime i.e. gcd(a, y) = 1

Examples : 
 

Input : x = 15
        y = 3 
Output : a = 5
Explanation: 5 is the max integer 
which satisfies both the conditions.
             15 % 5 =0
             gcd(5, 3) = 1
Hence, output is 5. 

Input : x = 14
        y = 28
Output : a = 1
Explanation: 14 % 1 =0
             gcd(1, 28) = 1
Hence, output is 1. 

 

Approach: Here, first we will remove the common factors of x and y from x by finding the greatest common divisor (gcd) of x and y and dividing x with that gcd. 
Mathematically: 
 

 x = x / gcd(x, y) —— STEP1 

Now, we repeat STEP1 till we get gcd(x, y) = 1. 
At last, we return a = x 

Algorithm:

Step 1: Define a function named gcd to find gcd of two numbers a and b.
Step 2: If a or b is equal to 0, return 0. If a is equal to b, return a.
Step 3: If a is greater than b, return gcd(a-b, b).
Step 4: If b is greater than a return gcd(a b-a).
Step 5: Define a function named cpFact to find the largest coprime divisor of two numbers x and y.
Step 6: While gcd(x, y) is not equal to 1, divide x by gcd(x,y).
Step 7: Return x as the largest coprime divisor.

below is the code implementation of the above approach:

C++




// CPP program to find the
// Largest Coprime Divisor
 
#include <bits/stdc++.h>
using namespace std;
 
// Recursive function to return gcd
// of a and b
int gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0 || b == 0)
        return 0;
 
    // base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return gcd(a - b, b);
    return gcd(a, b - a);
}
 
// function to find largest
// coprime divisor
int cpFact(int x, int y)
{
    while (gcd(x, y) != 1) {
        x = x / gcd(x, y);
    }
    return x;
}
 
// divisor code
int main()
{
    int x = 15;
    int y = 3;
    cout << cpFact(x, y) << endl;
    x = 14;
    y = 28;
    cout << cpFact(x, y) << endl;
    x = 7;
    y = 3;
    cout << cpFact(x, y);
    return 0;
}


Java




// java program to find the
// Largest Coprime Divisor
import java.io.*;
 
class GFG {
    // Recursive function to return gcd
    // of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
 
        // base case
        if (a == b)
            return a;
 
        // a is greater
        if (a > b)
            return gcd(a - b, b);
        return gcd(a, b - a);
    }
 
    // function to find largest
    // coprime divisor
    static int cpFact(int x, int y)
    {
        while (gcd(x, y) != 1) {
            x = x / gcd(x, y);
        }
        return x;
    }
 
    // divisor code
    public static void main(String[] args)
    {
        int x = 15;
        int y = 3;
        System.out.println(cpFact(x, y));
        x = 14;
        y = 28;
        System.out.println(cpFact(x, y));
        x = 7;
        y = 3;
        System.out.println(cpFact(x, y));
    }
}
 
//


Python3




# Python3 code to find the
# Largest Coprime Divisor
 
# Recursive function to return
# gcd of a and b
def gcd (a, b):
     
    # Everything divides 0
    if a == 0 or b == 0:
        return 0
     
    # base case
    if a == b:
        return a
         
    # a is greater
    if a > b:
        return gcd(a - b, b)
     
    return gcd(a, b - a)
 
# function to find largest
# coprime divisor
def cpFact(x, y):
    while gcd(x, y) != 1:
        x = x / gcd(x, y)
    return int(x)
     
# divisor code
x = 15
y = 3
print(cpFact(x, y))
x = 14
y = 28
print(cpFact(x, y))
x = 7
y = 3
print(cpFact(x, y))
 
# This code is contributed by "Sharad_Bhardwaj".


C#




// C# program to find the
// Largest Coprime Divisor
using System;
 
class GFG {
 
    // Recursive function to return gcd
    // of a and b
    static int gcd(int a, int b)
    {
 
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
 
        // base case
        if (a == b)
            return a;
 
        // a is greater
        if (a > b)
            return gcd(a - b, b);
 
        return gcd(a, b - a);
    }
 
    // function to find largest
    // coprime divisor
    static int cpFact(int x, int y)
    {
        while (gcd(x, y) != 1) {
            x = x / gcd(x, y);
        }
 
        return x;
    }
 
    // divisor code
    public static void Main()
    {
 
        int x = 15;
        int y = 3;
        Console.WriteLine(cpFact(x, y));
 
        x = 14;
        y = 28;
        Console.WriteLine(cpFact(x, y));
 
        x = 7;
        y = 3;
        Console.WriteLine(cpFact(x, y));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find the
// Largest Coprime Divisor
 
// Recursive function to
// return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0 || $b == 0)
        return 0;
 
    // base case
    if ($a == $b)
        return $a;
 
    // a is greater
    if ($a > $b)
        return gcd($a - $b, $b);
    return gcd($a, $b - $a);
}
 
// function to find largest
// coprime divisor
function cpFact( $x, $y)
{
    while (gcd($x, $y) != 1)
    {
        $x = $x / gcd($x, $y);
    }
    return $x;
}
 
// Driver Code
$x = 15;
$y = 3;
echo cpFact($x, $y), "\n";
$x = 14;
$y = 28;
echo cpFact($x, $y), "\n";
$x = 7;
$y = 3;
echo cpFact($x, $y);
 
// This code is contributed by aj_36
?>


Javascript




<script>
 
// Javascript program to find the
// Largest Coprime Divisor
 
// Recursive function to
// return gcd of a and b
function gcd(a, b)
{
    // Everything divides 0
    if (a == 0 || b == 0)
        return 0;
 
    // base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return gcd(a - b, b);
    return gcd(a, b - a);
}
 
// function to find largest
// coprime divisor
function cpFact(x, y)
{
    while (gcd(x, y) != 1)
    {
        x = x / gcd(x, y);
    }
    return x;
}
 
// Driver Code
let x = 15;
let y = 3;
document.write(cpFact(x, y) + "<br>");
x = 14;
y = 28;
document.write(cpFact(x, y), "<br>");
x = 7;
y = 3;
document.write(cpFact(x, y));
 
// This code is contributed by gfgking
 
</script>


Output : 

5
1
7

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 26 Mar, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials