Largest number that divides x and is co-prime with y

Given two positive numbers x and y. Find the maximum valued integer a such that:

  1. a divides x i.e. x % a = 0
  2. a and y are co-prime i.e. gcd(a, y) = 1

Examples :

Input : x = 15
        y = 3 
Output : a = 5
Explanation: 5 is the max integer 
which satisfies both the conditions.
             15 % 5 =0
             gcd(5, 3) = 1
Hence, output is 5. 

Input : x = 14
        y = 28
Output : a = 1
Explanation: 14 % 1 =0
             gcd(1, 28) = 1
Hence, output is 1. 

Approach: Here, first we will remove the common factors of x and y from x by finding the greatest common divisor (gcd) of x and y and dividing x with that gcd.
Mathematically:

 x = x / gcd(x, y) —— STEP1 

Now, we repeat STEP1 till we get gcd(x, y) = 1.
At last, we return a = x

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the
// Largest Coprime Divisor
  
#include <bits/stdc++.h>
using namespace std;
  
// Recursive function to return gcd
// of a and b
int gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0 || b == 0)
        return 0;
  
    // base case
    if (a == b)
        return a;
  
    // a is greater
    if (a > b)
        return gcd(a - b, b);
    return gcd(a, b - a);
}
  
// function to find largest
// coprime divisor
int cpFact(int x, int y)
{
    while (gcd(x, y) != 1) {
        x = x / gcd(x, y);
    }
    return x;
}
  
// divisor code
int main()
{
    int x = 15;
    int y = 3;
    cout << cpFact(x, y) << endl;
    x = 14;
    y = 28;
    cout << cpFact(x, y) << endl;
    x = 7;
    y = 3;
    cout << cpFact(x, y);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to find the
// Largest Coprime Divisor
import java.io.*;
  
class GFG {
    // Recursive function to return gcd
    // of a and b
    static int gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
  
        // base case
        if (a == b)
            return a;
  
        // a is greater
        if (a > b)
            return gcd(a - b, b);
        return gcd(a, b - a);
    }
  
    // function to find largest
    // coprime divisor
    static int cpFact(int x, int y)
    {
        while (gcd(x, y) != 1) {
            x = x / gcd(x, y);
        }
        return x;
    }
  
    // divisor code
    public static void main(String[] args)
    {
        int x = 15;
        int y = 3;
        System.out.println(cpFact(x, y));
        x = 14;
        y = 28;
        System.out.println(cpFact(x, y));
        x = 7;
        y = 3;
        System.out.println(cpFact(x, y));
    }
}
  
// This article is contributed by vt_m.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to find the
# Largest Coprime Divisor
  
# Recursive function to return
# gcd of a and b
def gcd (a, b):
      
    # Everything divides 0
    if a == 0 or b == 0:
        return 0
      
    # base case
    if a == b:
        return a
          
    # a is greater
    if a > b:
        return gcd(a - b, b)
      
    return gcd(a, b - a)
  
# function to find largest
# coprime divisor
def cpFact(x, y):
    while gcd(x, y) != 1:
        x = x / gcd(x, y)
    return int(x)
      
# divisor code
x = 15
y = 3
print(cpFact(x, y))
x = 14
y = 28
print(cpFact(x, y))
x = 7
y = 3
print(cpFact(x, y))
  
# This code is contributed by "Sharad_Bhardwaj".

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the
// Largest Coprime Divisor
using System;
  
class GFG {
  
    // Recursive function to return gcd
    // of a and b
    static int gcd(int a, int b)
    {
  
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
  
        // base case
        if (a == b)
            return a;
  
        // a is greater
        if (a > b)
            return gcd(a - b, b);
  
        return gcd(a, b - a);
    }
  
    // function to find largest
    // coprime divisor
    static int cpFact(int x, int y)
    {
        while (gcd(x, y) != 1) {
            x = x / gcd(x, y);
        }
  
        return x;
    }
  
    // divisor code
    public static void Main()
    {
  
        int x = 15;
        int y = 3;
        Console.WriteLine(cpFact(x, y));
  
        x = 14;
        y = 28;
        Console.WriteLine(cpFact(x, y));
  
        x = 7;
        y = 3;
        Console.WriteLine(cpFact(x, y));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the
// Largest Coprime Divisor
  
// Recursive function to 
// return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0 || $b == 0)
        return 0;
  
    // base case
    if ($a == $b)
        return $a;
  
    // a is greater
    if ($a > $b)
        return gcd($a - $b, $b);
    return gcd($a, $b - $a);
}
  
// function to find largest
// coprime divisor
function cpFact( $x, $y)
{
    while (gcd($x, $y) != 1) 
    {
        $x = $x / gcd($x, $y);
    }
    return $x;
}
  
// Driver Code
$x = 15;
$y = 3;
echo cpFact($x, $y), "\n";
$x = 14;
$y = 28;
echo cpFact($x, $y), "\n";
$x = 7;
$y = 3;
echo cpFact($x, $y);
  
// This code is contributed by aj_36
?>

chevron_right



Output :

5
1
7


My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.