Largest divisible pairs subset

Given an array of n distinct elements, find length of the largest subset such that every pair in the subset is such that the larger element of the pair is divisible by smaller element.

Examples:

Input : arr[] = {10, 5, 3, 15, 20} 
Output : 3 
Explanation: The largest subset is 10, 5, 20.
10 is divisible by 5, and 20 is divisible by 10.

Input : arr[] = {18, 1, 3, 6, 13, 17} 
Output : 4
Explanation: The largest subset is 18, 1, 3, 6,
In the subsequence, 3 is divisible by 1, 
6 by 3 and 18 by 6.



This can be solved using Dynamic Programming. We first sort the array so that the largest element is at the end. Then we traverse the sorted array from end. For every element a[i], we compute dp[i] where dp[i] indicates size of largest divisible subset where a[i] is the smallest element. We can compute dp[i] in a sorted array using values from dp[i+1] to dp[n-1]. Finally we return maximum value from dp[].

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the largest subset which
// where each pair is divisible.
#include <bits/stdc++.h>
using namespace std;
  
// function to find the longest Subsequence
int largestSubset(int a[], int n)
{
    // Sort array in increasing order
    sort(a, a + n);
  
    // dp[i] is going to store size of largest
    // divisible subset beginning with a[i].
    int dp[n];
  
    // Since last element is largest, d[n-1] is 1
    dp[n - 1] = 1;
  
    // Fill values for smaller elements.
    for (int i = n - 2; i >= 0; i--) {
  
        // Find all multiples of a[i] and consider
        // the multiple that has largest subset 
        // beginning with it.
        int mxm = 0;
        for (int j = i + 1; j < n; j++)
            if (a[j] % a[i] == 0)
                mxm = max(mxm, dp[j]);
  
        dp[i] = 1 + mxm;
    }
  
    // Return maximum value from dp[]
    return *max_element(dp, dp + n);
}
  
// driver code to check the above function
int main()
{
    int a[] = { 1, 3, 6, 13, 17, 18 };
    int n = sizeof(a) / sizeof(a[0]);
    cout << largestSubset(a, n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

import java.util.Arrays;
  
// Java program to find the largest 
// subset which where each pair 
// is divisible.
class GFG {
  
    // function to find the longest Subsequence 
    static int largestSubset(int[] a, int n) {
        // Sort array in increasing order 
        Arrays.sort(a);
  
        // dp[i] is going to store size of largest 
        // divisible subset beginning with a[i]. 
        int[] dp = new int[n];
  
        // Since last element is largest, d[n-1] is 1 
        dp[n - 1] = 1;
  
        // Fill values for smaller elements. 
        for (int i = n - 2; i >= 0; i--) {
  
            // Find all multiples of a[i] and consider 
            // the multiple that has largest subset 
            // beginning with it. 
            int mxm = 0;
            for (int j = i + 1; j < n; j++) {
                if (a[j] % a[i] == 0) {
                    mxm = Math.max(mxm, dp[j]);
                }
            }
  
            dp[i] = 1 + mxm;
        }
  
        // Return maximum value from dp[] 
        return Arrays.stream(dp).max().getAsInt();
    }
  
    // driver code to check the above function 
    public static void main(String[] args) {
        int[] a = {1, 3, 6, 13, 17, 18};
        int n = a.length;
        System.out.println(largestSubset(a, n));
    }
}
  
/* This JAVA code is contributed by Rajput-Ji*/

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find the largest 
# subset where each pair is divisible.
  
# function to find the longest Subsequence
def largestSubset(a, n):
      
    # Sort array in
    # increasing order
    a.sort()
      
    # dp[i] is going to store size 
    # of largest divisible subset 
    # beginning with a[i].
    dp = [0 for i in range(n)]
      
    # Since last element is largest,
    # d[n-1] is 1
    dp[n - 1] = 1
  
    # Fill values for smaller elements
    for i in range(n - 2, -1, -1):
          
        # Find all multiples of a[i] 
        # and consider the multiple 
        # that has largest subset     
        # beginning with it. 
        mxm = 0;
        for j in range(i + 1, n):
            if a[j] % a[i] == 0:
                mxm = max(mxm, dp[j])
        dp[i] = 1 + mxm
          
    # Return maximum value from dp[] 
    return max(dp)
  
# Driver Code
a = [ 1, 3, 6, 13, 17, 18 ]
n = len(a)
print(largestSubset(a, n))
  
# This code is contributed by
# sahil shelangia

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the largest 
// subset which where each pair 
// is divisible.
using System;
using System.Linq;
  
public class GFG {
  
    // function to find the longest Subsequence
    static int largestSubset(int[] a, int n)
    {
        // Sort array in increasing order
        Array.Sort(a);
  
        // dp[i] is going to store size of largest
        // divisible subset beginning with a[i].
        int[] dp = new int[n];
  
        // Since last element is largest, d[n-1] is 1
        dp[n - 1] = 1;
  
        // Fill values for smaller elements.
        for (int i = n - 2; i >= 0; i--) {
  
            // Find all multiples of a[i] and consider
            // the multiple that has largest subset
            // beginning with it.
            int mxm = 0;
            for (int j = i + 1; j < n; j++)
                if (a[j] % a[i] == 0)
                    mxm = Math.Max(mxm, dp[j]);
  
            dp[i] = 1 + mxm;
        }
  
        // Return maximum value from dp[]
        return dp.Max();
    }
  
    // driver code to check the above function
    static public void Main()
    {
        int[] a = { 1, 3, 6, 13, 17, 18 };
        int n = a.Length;
        Console.WriteLine(largestSubset(a, n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the
// largest subset which
// where each pair is
// divisible.
  
// function to find the
// longest Subsequence
function largestSubset($a, $n)
{
      
    // Sort array in 
    // increasing order
    sort($a);
  
    // dp[i] is going to 
    // store size of largest
    // divisible subset 
    // beginning with a[i].
    $dp = array();
  
    // Since last element is 
    // largest, d[n-1] is 1
    $dp[$n - 1] = 1;
  
    // Fill values for 
    // smaller elements.
    for ($i = $n - 2; $i >= 0; $i--) 
    {
  
        // Find all multiples of
        // a[i] and consider
        // the multiple that 
        // has largest subset 
        // beginning with it.
        $mxm = 0;
        for ($j = $i + 1; $j < $n; $j++)
            if ($a[$j] % $a[$i] == 0)
                $mxm = max($mxm, $dp[$j]);
  
        $dp[$i] = 1 + $mxm;
    }
  
    // Return maximum value
    // from dp[]
    return max($dp);
}
  
    // Driver Code
    $a = array(1, 3, 6, 13, 17, 18);
    $n = count($a);
    echo largestSubset($a, $n);
      
// This code is contributed by anuj_67.
?>

chevron_right



Output:

4

Time Complexity: O(n*n)

Exercise: The above solution doesn’t handle duplicates. How to extend this solution to handle duplicates?



My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, sahilshelangia, Rajput-Ji