Given an array of n distinct elements, find length of the largest subset such that every pair in the subset is such that the larger element of the pair is divisible by smaller element.

**Examples:**

Input : arr[] = {10, 5, 3, 15, 20} Output : 3 Explanation: The largest subset is 10, 5, 20. 10 is divisible by 5, and 20 is divisible by 10. Input : arr[] = {18, 1, 3, 6, 13, 17} Output : 4 Explanation: The largest subset is 18, 1, 3, 6, In the subsequence, 3 is divisible by 1, 6 by 3 and 18 by 6.

This can be solved using Dynamic Programming. We first sort the array so that the largest element is at the end. Then we traverse the sorted array from end. For every element a[i], we compute dp[i] where dp[i] indicates size of largest divisible subset where a[i] is the smallest element. We can compute dp[i] in a sorted array using values from dp[i+1] to dp[n-1]. Finally we return maximum value from dp[].

Below is the implementation of the above approach:

## C++

`// CPP program to find the largest subset which ` `// where each pair is divisible. ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// function to find the longest Subsequence ` `int` `largestSubset(` `int` `a[], ` `int` `n) ` `{ ` ` ` `// Sort array in increasing order ` ` ` `sort(a, a + n); ` ` ` ` ` `// dp[i] is going to store size of largest ` ` ` `// divisible subset beginning with a[i]. ` ` ` `int` `dp[n]; ` ` ` ` ` `// Since last element is largest, d[n-1] is 1 ` ` ` `dp[n - 1] = 1; ` ` ` ` ` `// Fill values for smaller elements. ` ` ` `for` `(` `int` `i = n - 2; i >= 0; i--) { ` ` ` ` ` `// Find all multiples of a[i] and consider ` ` ` `// the multiple that has largest subset ` ` ` `// beginning with it. ` ` ` `int` `mxm = 0; ` ` ` `for` `(` `int` `j = i + 1; j < n; j++) ` ` ` `if` `(a[j] % a[i] == 0) ` ` ` `mxm = max(mxm, dp[j]); ` ` ` ` ` `dp[i] = 1 + mxm; ` ` ` `} ` ` ` ` ` `// Return maximum value from dp[] ` ` ` `return` `*max_element(dp, dp + n); ` `} ` ` ` `// driver code to check the above function ` `int` `main() ` `{ ` ` ` `int` `a[] = { 1, 3, 6, 13, 17, 18 }; ` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(a[0]); ` ` ` `cout << largestSubset(a, n) << endl; ` ` ` `return` `0; ` `} ` |

## Python3

# Python program to find the largest

# subset where each pair is divisible.

# function to find the longest Subsequence

def largestSubset(a, n):

# Sort array in

# increasing order

a.sort()

# dp[i] is going to store size

# of largest divisible subset

# beginning with a[i].

dp = [0 for i in range(n)]

# Since last element is largest,

# d[n-1] is 1

dp[n – 1] = 1;

# Fill values for smaller elements

for i in range(n – 2, -1, -1):

# Find all multiples of a[i]

# and consider the multiple

# that has largest subset

# beginning with it.

mxm = 0;

for j in range(i + 1, n):

if a[j] % a[i] == 0:

mxm = max(mxm, dp[j])

dp[i] = 1 + mxm

# Return maximum value from dp[]

return max(dp)

# Driver Code

a = [ 1, 3, 6, 13, 17, 18 ]

n = len(a)

print(largestSubset(a, n))

# This code is contributed by

# sahil shelangia

## C#

`// C# program to find the largest ` `// subset which where each pair ` `// is divisible. ` `using` `System; ` `using` `System.Linq; ` ` ` `public` `class` `GFG { ` ` ` ` ` `// function to find the longest Subsequence ` ` ` `static` `int` `largestSubset(` `int` `[] a, ` `int` `n) ` ` ` `{ ` ` ` `// Sort array in increasing order ` ` ` `Array.Sort(a); ` ` ` ` ` `// dp[i] is going to store size of largest ` ` ` `// divisible subset beginning with a[i]. ` ` ` `int` `[] dp = ` `new` `int` `[n]; ` ` ` ` ` `// Since last element is largest, d[n-1] is 1 ` ` ` `dp[n - 1] = 1; ` ` ` ` ` `// Fill values for smaller elements. ` ` ` `for` `(` `int` `i = n - 2; i >= 0; i--) { ` ` ` ` ` `// Find all multiples of a[i] and consider ` ` ` `// the multiple that has largest subset ` ` ` `// beginning with it. ` ` ` `int` `mxm = 0; ` ` ` `for` `(` `int` `j = i + 1; j < n; j++) ` ` ` `if` `(a[j] % a[i] == 0) ` ` ` `mxm = Math.Max(mxm, dp[j]); ` ` ` ` ` `dp[i] = 1 + mxm; ` ` ` `} ` ` ` ` ` `// Return maximum value from dp[] ` ` ` `return` `dp.Max(); ` ` ` `} ` ` ` ` ` `// driver code to check the above function ` ` ` `static` `public` `void` `Main() ` ` ` `{ ` ` ` `int` `[] a = { 1, 3, 6, 13, 17, 18 }; ` ` ` `int` `n = a.Length; ` ` ` `Console.WriteLine(largestSubset(a, n)); ` ` ` `} ` `} ` ` ` `// This code is contributed by vt_m. ` |

## PHP

`<?php ` `// PHP program to find the ` `// largest subset which ` `// where each pair is ` `// divisible. ` ` ` `// function to find the ` `// longest Subsequence ` `function` `largestSubset(` `$a` `, ` `$n` `) ` `{ ` ` ` ` ` `// Sort array in ` ` ` `// increasing order ` ` ` `sort(` `$a` `); ` ` ` ` ` `// dp[i] is going to ` ` ` `// store size of largest ` ` ` `// divisible subset ` ` ` `// beginning with a[i]. ` ` ` `$dp` `= ` `array` `(); ` ` ` ` ` `// Since last element is ` ` ` `// largest, d[n-1] is 1 ` ` ` `$dp` `[` `$n` `- 1] = 1; ` ` ` ` ` `// Fill values for ` ` ` `// smaller elements. ` ` ` `for` `(` `$i` `= ` `$n` `- 2; ` `$i` `>= 0; ` `$i` `--) ` ` ` `{ ` ` ` ` ` `// Find all multiples of ` ` ` `// a[i] and consider ` ` ` `// the multiple that ` ` ` `// has largest subset ` ` ` `// beginning with it. ` ` ` `$mxm` `= 0; ` ` ` `for` `(` `$j` `= ` `$i` `+ 1; ` `$j` `< ` `$n` `; ` `$j` `++) ` ` ` `if` `(` `$a` `[` `$j` `] % ` `$a` `[` `$i` `] == 0) ` ` ` `$mxm` `= max(` `$mxm` `, ` `$dp` `[` `$j` `]); ` ` ` ` ` `$dp` `[` `$i` `] = 1 + ` `$mxm` `; ` ` ` `} ` ` ` ` ` `// Return maximum value ` ` ` `// from dp[] ` ` ` `return` `max(` `$dp` `); ` `} ` ` ` ` ` `// Driver Code ` ` ` `$a` `= ` `array` `(1, 3, 6, 13, 17, 18); ` ` ` `$n` `= ` `count` `(` `$a` `); ` ` ` `echo` `largestSubset(` `$a` `, ` `$n` `); ` ` ` `// This code is contributed by anuj_67. ` `?> ` |

**Output:**

4

**Time Complexity:** O(n*n)

**Exercise:** The above solution doesn’t handle duplicates. How to extend this solution to handle duplicates?

## Recommended Posts:

- Game of replacing array elements
- Subset Sum Problem in O(sum) space
- Painting Fence Algorithm
- Subset with sum divisible by m
- Perfect Sum Problem (Print all subsets with given sum)
- Gold Mine Problem
- Sum of average of all subsets
- Choice of Area
- Compute nCr % p | Set 1 (Introduction and Dynamic Programming Solution)
- Program for nth Catalan Number
- Subset Sum Problem | DP-25
- Cutting a Rod | DP-13
- Coin Change | DP-7
- Longest Common Subsequence | DP-4
- Program for array rotation

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.