Largest cube that can be inscribed within the sphere

Given here is a sphere of radius r, the task is to find the side of the largest cube that can fit inside in it.

Examples:

Input: r = 8
Output: 9.2376

Input: r = 5
Output: 5.7735


Approach:

Side of the cube = a
Radius of the sphere = r
From the diagonal, it is clear that, diagonal of the cube = diameter of the sphere,
a√3 = 2r or, a = 2r/√3

Below is the implementation:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find the biggest cube
// inscribed within a sphere
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the side of the cube
float largestCube(float r)
{
  
    // radius cannot be negative
    if (r < 0)
        return -1;
  
    // side of the cube
    float a = (2 * r) / sqrt(3);
    return a;
}
  
// Driver code
int main()
{
    float r = 5;
    cout << largestCube(r) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find the biggest cube 
// inscribed within a sphere 
import java.util.*;
class Solution{
// Function to find the side of the cube 
static float largestCube(float r) 
    
    // radius cannot be negative 
    if (r < 0
        return -1
    
    // side of the cube 
    float a = (2 * r) / (float)Math.sqrt(3); 
    return a; 
    
// Driver code 
public static void main(String args[])
    float r = 5
    System.out.println( largestCube(r)); 
    
  
}
//contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 Program to find the biggest 
# cube inscribed within a sphere
from math import sqrt
  
# Function to find the side of the cube
def largestCube(r):
      
    # radius cannot be negative
    if (r < 0):
        return -1
  
    # side of the cube
    a = (2 * r) / sqrt(3)
    return a
  
# Driver code
if __name__ == '__main__':
    r = 5
    print("{0:.6}".format(largestCube(r)))
  
# This code is contributed
# by SURENDRA_GANGWAR

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find the biggest cube 
// inscribed within a sphere 
using System;
class Solution{
// Function to find the side of the cube 
static float largestCube(float r) 
  
    // radius cannot be negative 
    if (r < 0) 
        return -1; 
  
    // side of the cube 
    float a = (2 * r) / (float)Math.Sqrt(3); 
    return a; 
  
// Driver code 
static void Main()
    float r = 5; 
    Console.WriteLine( largestCube(r)); 
  
  
}
//This code is contributed by mits

chevron_right


PHP

Output:

5.7735


My Personal Notes arrow_drop_up

Budding Web DeveloperKeen learnerAverage CoderDancer&Social Activist

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.