# Largest cube that can be inscribed within the sphere

Last Updated : 27 Jul, 2022

Given here is a sphere of radius r, the task is to find the side of the largest cube that can fit inside in it.
Examples:

```Input: r = 8
Output: 9.2376

Input: r = 5
Output: 5.7735```

Approach:

Side of the cube = a
Radius of the sphere = r
From the diagonal, it is clear that, diagonal of the cube = diameter of the sphere,
a?3 = 2r or, a = 2r/?3

Below is the implementation:

## C++

 `// C++ Program to find the biggest cube` `// inscribed within a sphere` `#include ` `using` `namespace` `std;`   `// Function to find the side of the cube` `float` `largestCube(``float` `r)` `{`   `    ``// radius cannot be negative` `    ``if` `(r < 0)` `        ``return` `-1;`   `    ``// side of the cube` `    ``float` `a = (2 * r) / ``sqrt``(3);` `    ``return` `a;` `}`   `// Driver code` `int` `main()` `{` `    ``float` `r = 5;` `    ``cout << largestCube(r) << endl;`   `    ``return` `0;` `}`

## Java

 `// Java Program to find the biggest cube ` `// inscribed within a sphere ` `import` `java.util.*;` `class` `Solution{` `// Function to find the side of the cube ` `static` `float` `largestCube(``float` `r) ` `{ ` `  `  `    ``// radius cannot be negative ` `    ``if` `(r < ``0``) ` `        ``return` `-``1``; ` `  `  `    ``// side of the cube ` `    ``float` `a = (``2` `* r) / (``float``)Math.sqrt(``3``); ` `    ``return` `a; ` `} ` `  `  `// Driver code ` `public` `static` `void` `main(String args[])` `{ ` `    ``float` `r = ``5``; ` `    ``System.out.println( largestCube(r)); ` `  `  `} `   `}` `//contributed by Arnab Kundu`

## Python3

 `# Python 3 Program to find the biggest ` `# cube inscribed within a sphere` `from` `math ``import` `sqrt`   `# Function to find the side of the cube` `def` `largestCube(r):` `    `  `    ``# radius cannot be negative` `    ``if` `(r < ``0``):` `        ``return` `-``1`   `    ``# side of the cube` `    ``a ``=` `(``2` `*` `r) ``/` `sqrt(``3``)` `    ``return` `a`   `# Driver code` `if` `__name__ ``=``=` `'__main__'``:` `    ``r ``=` `5` `    ``print``(``"{0:.6}"``.``format``(largestCube(r)))`   `# This code is contributed` `# by SURENDRA_GANGWAR`

## C#

 `// C# Program to find the biggest cube ` `// inscribed within a sphere ` `using` `System;` `class` `Solution{` `// Function to find the side of the cube ` `static` `float` `largestCube(``float` `r) ` `{ `   `    ``// radius cannot be negative ` `    ``if` `(r < 0) ` `        ``return` `-1; `   `    ``// side of the cube ` `    ``float` `a = (2 * r) / (``float``)Math.Sqrt(3); ` `    ``return` `a; ` `} `   `// Driver code ` `static` `void` `Main()` `{ ` `    ``float` `r = 5; ` `    ``Console.WriteLine( largestCube(r)); `   `} `   `}` `//This code is contributed by mits`

## PHP

 ``

## Javascript

 ``

Output:

`5.7735`

Time Complexity: O(1)

Auxiliary Space: O(1)

Previous
Next