Largest cube that can be inscribed within a right circular cylinder
Given here is a right circular cylinder of height h and radius r. The task is to find the volume of biggest cube that can be inscribed within it.
Examples:
Input: h = 3, r = 2 Output: volume = 27 Input: h = 5, r = 4 Output: volume = 125
Approach: From the figure, it can be clearly understand that side of the cube = height of the cylinder.
So, the volume = (height)^3
Below is the implementation of the above approach:
C++
// C++ Program to find the biggest cube // inscribed within a right circular cylinder #include <bits/stdc++.h> using namespace std; // Function to find the volume of the cube float cube( float h, float r) { // height and radius cannot be negative if (h < 0 && r < 0) return -1; // volume of the cube float a = pow (h, 3); return a; } // Driver code int main() { float h = 5, r = 4; cout << cube(h, r) << endl; return 0; } |
chevron_right
filter_none
Java
// Java Program to find the biggest cube // inscribed within a right circular cylinder class Solution { // Function to find the volume of the cube static float cube( float h, float r) { // height and radius cannot be negative if (h < 0 && r < 0 ) return - 1 ; // volume of the cube float a = ( float )Math.pow(h, 3 ); return a; } // Driver code public static void main(String args[]) { float h = 5 , r = 4 ; System.out.println( cube(h, r) ); } } //contributed by Arnab Kundu |
chevron_right
filter_none
Python 3
# Python 3 Program to find the biggest cube # inscribed within a right circular cylinder import math # Function to find the volume of the cube def cube(h, r): # height and radius cannot be negative if (h < 0 and r < 0 ): return - 1 # volume of the cube a = math. pow (h, 3 ) return a # Driver code h = 5 ; r = 4 ; print (cube(h, r)); # This code is contributed # by Akanksha Rai |
chevron_right
filter_none
C#
// C# Program to find the biggest // cube inscribed within a right // circular cylinder using System; class GFG { // Function to find the volume // of the cube static float cube( float h, float r) { // height and radius cannot // be negative if (h < 0 && r < 0) return -1; // volume of the cube float a = ( float )Math.Pow(h, 3); return a; } // Driver code public static void Main() { float h = 5, r = 4; Console.Write( cube(h, r) ); } } // This code is contributed // by 29AjayKumar |
chevron_right
filter_none
PHP
<?php // PHP Program to find the biggest // cube inscribed within a right // circular cylinder // Function to find the volume // of the cube function cube( $h , $r ) { // height and radius cannot // be negative if ( $h < 0 && $r < 0) return -1; // volume of the cube $a = pow( $h , 3); return $a ; } // Driver code $h = 5; $r = 4; echo cube( $h , $r ); // This code is contributed by @Tushil. ?> |
chevron_right
filter_none
Output:
125
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.