# Largest cube that can be inscribed within a right circular cylinder

Given here is a right circular cylinder of height **h** and radius **r**. The task is to find the **volume **of biggest cube that can be inscribed within it.**Examples**:

Input: h = 3, r = 2Output: volume = 27Input: h = 5, r = 4Output: volume = 125

**Approach**: From the figure, it can be clearly understand that **side of the cube = height of the cylinder**.

So, the **volume = (height)^3**

Below is the implementation of the above approach:

## C++

`// C++ Program to find the biggest cube` `// inscribed within a right circular cylinder` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the volume of the cube` `float` `cube(` `float` `h, ` `float` `r)` `{` ` ` `// height and radius cannot be negative` ` ` `if` `(h < 0 && r < 0)` ` ` `return` `-1;` ` ` `// volume of the cube` ` ` `float` `a = ` `pow` `(h, 3);` ` ` `return` `a;` `}` `// Driver code` `int` `main()` `{` ` ` `float` `h = 5, r = 4;` ` ` `cout << cube(h, r) << endl;` ` ` `return` `0;` `}` |

## Java

`// Java Program to find the biggest cube` `// inscribed within a right circular cylinder` `class` `Solution` `{` ` ` `// Function to find the volume of the cube` `static` `float` `cube(` `float` `h, ` `float` `r)` `{` ` ` `// height and radius cannot be negative` ` ` `if` `(h < ` `0` `&& r < ` `0` `)` ` ` `return` `-` `1` `;` ` ` `// volume of the cube` ` ` `float` `a = (` `float` `)Math.pow(h, ` `3` `);` ` ` `return` `a;` `}` `// Driver code` `public` `static` `void` `main(String args[])` `{` ` ` `float` `h = ` `5` `, r = ` `4` `;` ` ` `System.out.println( cube(h, r) );` `}` `}` `//contributed by Arnab Kundu` |

## Python 3

`# Python 3 Program to find the biggest cube` `# inscribed within a right circular cylinder` `import` `math` `# Function to find the volume of the cube` `def` `cube(h, r):` ` ` `# height and radius cannot be negative` ` ` `if` `(h < ` `0` `and` `r < ` `0` `):` ` ` `return` `-` `1` ` ` `# volume of the cube` ` ` `a ` `=` `math.` `pow` `(h, ` `3` `)` ` ` `return` `a` `# Driver code` `h ` `=` `5` `; r ` `=` `4` `;` `print` `(cube(h, r));` `# This code is contributed` `# by Akanksha Rai` |

## C#

`// C# Program to find the biggest` `// cube inscribed within a right` `// circular cylinder` `using` `System;` ` ` `class` `GFG` `{` `// Function to find the volume` `// of the cube` `static` `float` `cube(` `float` `h, ` `float` `r)` `{` ` ` `// height and radius cannot` ` ` `// be negative` ` ` `if` `(h < 0 && r < 0)` ` ` `return` `-1;` ` ` `// volume of the cube` ` ` `float` `a = (` `float` `)Math.Pow(h, 3);` ` ` `return` `a;` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `float` `h = 5, r = 4;` ` ` `Console.Write( cube(h, r) );` `}` `}` `// This code is contributed` `// by 29AjayKumar` |

## PHP

`<?php` `// PHP Program to find the biggest ` `// cube inscribed within a right` `// circular cylinder` `// Function to find the volume` `// of the cube` `function` `cube(` `$h` `, ` `$r` `)` `{` ` ` `// height and radius cannot` ` ` `// be negative` ` ` `if` `(` `$h` `< 0 && ` `$r` `< 0)` ` ` `return` `-1;` ` ` `// volume of the cube` ` ` `$a` `= pow(` `$h` `, 3);` ` ` `return` `$a` `;` `}` `// Driver code` `$h` `= 5;` `$r` `= 4;` `echo` `cube(` `$h` `, ` `$r` `);` `// This code is contributed by @Tushil.` `?>` |

## Javascript

`<script>` `// javascript Program to find the biggest cube` `// inscribed within a right circular cylinder` `// Function to find the volume of the cube` `function` `cube(h , r)` `{` ` ` `// height and radius cannot be negative` ` ` `if` `(h < 0 && r < 0)` ` ` `return` `-1;` ` ` `// volume of the cube` ` ` `var` `a = Math.pow(h, 3);` ` ` `return` `a;` `}` `// Driver code` ` ` `var` `h = 5, r = 4;` `document.write( cube(h, r) );` `// This code is contributed by 29AjayKumar` `</script>` |

**Output:**

125

**Time Complexity:** O(1)**Auxiliary Space:** O(1), As we are not using any extra space.