Related Articles

Related Articles

Largest cube that can be inscribed within a right circular cylinder
  • Last Updated : 03 Dec, 2018

Given here is a right circular cylinder of height h and radius r. The task is to find the volume of biggest cube that can be inscribed within it.

Examples:

Input: h = 3, r = 2
Output: volume = 27

Input: h = 5, r = 4
Output: volume = 125

Approach: From the figure, it can be clearly understand that side of the cube = height of the cylinder.
So, the volume = (height)^3

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find the biggest cube
// inscribed within a right circular cylinder
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the volume of the cube
float cube(float h, float r)
{
  
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
  
    // volume of the cube
    float a = pow(h, 3);
  
    return a;
}
  
// Driver code
int main()
{
    float h = 5, r = 4;
    cout << cube(h, r) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find the biggest cube 
// inscribed within a right circular cylinder 
class Solution
{
      
  
// Function to find the volume of the cube 
static float cube(float h, float r) 
  
    // height and radius cannot be negative 
    if (h < 0 && r < 0
        return -1
  
    // volume of the cube 
    float a = (float)Math.pow(h, 3); 
  
    return a; 
  
// Driver code 
public static void main(String args[])
    float h = 5, r = 4
    System.out.println( cube(h, r) ); 
}
//contributed by Arnab Kundu

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 Program to find the biggest cube
# inscribed within a right circular cylinder
import math
  
# Function to find the volume of the cube
def cube(h, r):
  
    # height and radius cannot be negative
    if (h < 0 and r < 0):
        return -1
  
    # volume of the cube
    a = math.pow(h, 3)
  
    return a
  
# Driver code
h = 5; r = 4;
print(cube(h, r));
  
# This code is contributed
# by Akanksha Rai

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find the biggest
// cube inscribed within a right 
// circular cylinder 
using System;
                      
class GFG
{
  
// Function to find the volume
// of the cube 
static float cube(float h, float r) 
  
    // height and radius cannot
    // be negative 
    if (h < 0 && r < 0) 
        return -1; 
  
    // volume of the cube 
    float a = (float)Math.Pow(h, 3); 
  
    return a; 
  
// Driver code 
public static void Main()
    float h = 5, r = 4; 
    Console.Write( cube(h, r) ); 
}
}
  
// This code is contributed 
// by 29AjayKumar

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find the biggest  
// cube inscribed within a right 
// circular cylinder 
  
// Function to find the volume
// of the cube 
function cube($h, $r
  
    // height and radius cannot 
    // be negative 
    if ($h < 0 && $r < 0) 
        return -1; 
  
    // volume of the cube 
    $a = pow($h, 3); 
  
    return $a
  
// Driver code 
$h = 5;
$r = 4; 
echo cube($h, $r); 
  
// This code is contributed by @Tushil.
?>

chevron_right


Output:

125

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :