Skip to content
Related Articles

Related Articles

Improve Article
Largest area square in an array when elements can be shuffled
  • Difficulty Level : Medium
  • Last Updated : 03 Jun, 2021

Given an array arr[] of N integers where arr[i] is the height of the ith chocolate and all the chocolates are 1 unit wide, the task is to find the maximum area for any square made from the chocolates when the chocolates can be arranged in any order.
Examples: 
 

Input: arr[] = {1, 3, 4, 5, 5} 
Output:
Square with side = 3 can be obtained 
from either {3, 4, 5} or {4, 5, 5}.
Input: arr[] = {6, 1, 6, 6, 6} 
Output: 16 
 

 

Approach: A square of side a can be obtained if there exists atleast a element in the array which are either equal to or greater than a. Binary Search can be used to find the maximum side of the square that could be achieved within the range of 0 to N.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if it
// is possible to make a square
// with side equal to l
bool isSquarePossible(int arr[], int n, int l)
{
 
    // To store the count of elements
    // greater than or equal to l
    int cnt = 0;
    for (int i = 0; i < n; i++) {
 
        // Increment the count
        if (arr[i] >= l)
            cnt++;
 
        // If the count becomes greater
        // than or equal to l
        if (cnt >= l)
            return true;
    }
 
    return false;
}
 
// Function to return the
// maximum area of the square
// that can be obtained
int maxArea(int arr[], int n)
{
    int l = 0, r = n;
    int len = 0;
    while (l <= r) {
        int m = l + ((r - l) / 2);
 
        // If square is possible with
        // side length m
        if (isSquarePossible(arr, n, m)) {
            len = m;
            l = m + 1;
        }
 
        // Try to find a square with
        // smaller side length
        else
            r = m - 1;
    }
 
    // Return the area
    return (len * len);
}
 
// Driver code
int main()
{
    int arr[] = { 1, 3, 4, 5, 5 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << maxArea(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function that returns true if it
    // is possible to make a square
    // with side equal to l
    static boolean isSquarePossible(int arr[],
                                    int n, int l)
    {
     
        // To store the count of elements
        // greater than or equal to l
        int cnt = 0;
        for (int i = 0; i < n; i++)
        {
     
            // Increment the count
            if (arr[i] >= l)
                cnt++;
     
            // If the count becomes greater
            // than or equal to l
            if (cnt >= l)
                return true;
        }
        return false;
    }
     
    // Function to return the
    // maximum area of the square
    // that can be obtained
    static int maxArea(int arr[], int n)
    {
        int l = 0, r = n;
        int len = 0;
        while (l <= r)
        {
            int m = l + ((r - l) / 2);
     
            // If square is possible with
            // side length m
            if (isSquarePossible(arr, n, m))
            {
                len = m;
                l = m + 1;
            }
     
            // Try to find a square with
            // smaller side length
            else
                r = m - 1;
        }
     
        // Return the area
        return (len * len);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 1, 3, 4, 5, 5 };
        int n = arr.length;
     
        System.out.println(maxArea(arr, n));
    }
}
 
// This code is contributed by kanugargng

Python3




# Python3 implementation of the approach
 
# Function that returns true if it
# is possible to make a square
# with side equal to l
def isSquarePossible(arr, n, l) :
 
    # To store the count of elements
    # greater than or equal to l
    cnt = 0
    for i in range(n) :
 
        # Increment the count
        if arr[i] >= l :
            cnt += 1
 
        # If the count becomes greater
        # than or equal to l
        if cnt >= l :
            return True
 
    return False
 
# Function to return the
# maximum area of the square
# that can be obtained
def maxArea(arr, n) :
 
    l , r = 0, n
    len = 0
    while l <= r :
        m = l + ((r - l) // 2)
 
        # If square is possible with
        # side length m
        if isSquarePossible(arr, n, m) :
            len = m
            l = m + 1
 
        # Try to find a square with
        # smaller side length
        else :
            r = m - 1
 
    # Return the area
    return (len * len)
 
# Driver code
arr = [ 1, 3, 4, 5, 5 ]
n = len(arr)
 
print(maxArea(arr, n))
 
# This code is contributed by divyamohan

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function that returns true if it
    // is possible to make a square
    // with side equal to l
    static bool isSquarePossible(int []arr,
                                 int n, int l)
    {
     
        // To store the count of elements
        // greater than or equal to l
        int cnt = 0;
        for (int i = 0; i < n; i++)
        {
     
            // Increment the count
            if (arr[i] >= l)
                cnt++;
     
            // If the count becomes greater
            // than or equal to l
            if (cnt >= l)
                return true;
        }
        return false;
    }
     
    // Function to return the
    // maximum area of the square
    // that can be obtained
    static int maxArea(int []arr, int n)
    {
        int l = 0, r = n;
        int len = 0;
        while (l <= r)
        {
            int m = l + ((r - l) / 2);
     
            // If square is possible with
            // side length m
            if (isSquarePossible(arr, n, m))
            {
                len = m;
                l = m + 1;
            }
     
            // Try to find a square with
            // smaller side length
            else
                r = m - 1;
        }
     
        // Return the area
        return (len * len);
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 3, 4, 5, 5 };
        int n = arr.Length;
     
        Console.WriteLine(maxArea(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// JavaScript implementation of the approach
 
 
// Function that returns true if it
// is possible to make a square
// with side equal to l
function isSquarePossible(arr, n, l) {
 
    // To store the count of elements
    // greater than or equal to l
    let cnt = 0;
    for (let i = 0; i < n; i++) {
 
        // Increment the count
        if (arr[i] >= l)
            cnt++;
 
        // If the count becomes greater
        // than or equal to l
        if (cnt >= l)
            return true;
    }
 
    return false;
}
 
// Function to return the
// maximum area of the square
// that can be obtained
function maxArea(arr, n) {
    let l = 0, r = n;
    let len = 0;
    while (l <= r) {
        let m = l + Math.floor((r - l) / 2);
 
        // If square is possible with
        // side length m
        if (isSquarePossible(arr, n, m)) {
            len = m;
            l = m + 1;
        }
 
        // Try to find a square with
        // smaller side length
        else
            r = m - 1;
    }
 
    // Return the area
    return (len * len);
}
 
// Driver code
 
let arr = [1, 3, 4, 5, 5];
let n = arr.length;
 
document.write(maxArea(arr, n));
 
</script>
Output: 
9

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :