Related Articles

# K’th Smallest/Largest Element in Unsorted Array | Set 3 (Worst Case Linear Time)

• Difficulty Level : Expert
• Last Updated : 25 Jun, 2021

We recommend reading following posts as a prerequisite of this post.
K’th Smallest/Largest Element in Unsorted Array | Set 1
K’th Smallest/Largest Element in Unsorted Array | Set 2 (Expected Linear Time)
Given an array and a number k where k is smaller than the size of the array, we need to find the k’th smallest element in the given array. It is given that all array elements are distinct.
Examples:

Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 3
Output: 7

Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 4
Output: 10

In previous post, we discussed an expected linear time algorithm. In this post, a worst-case linear time method is discussed. The idea in this new method is similar to quickSelect(), we get worst-case linear time by selecting a pivot that divides array in a balanced way (there are not very few elements on one side and many on another side). After the array is divided in a balanced way, we apply the same steps as used in quickSelect() to decide whether to go left or right of the pivot.
Following is complete algorithm.

kthSmallest(arr[0..n-1], k)
1) Divide arr[] into ⌈n/5⌉ groups where size of each group is 5 except possibly the last group which may have less than 5 elements.
2) Sort the above created ⌈n/5⌉ groups and find median of all groups. Create an auxiliary array ‘median[]’ and store medians of all ⌈n/5⌉ groups in this median array.
// Recursively call this method to find median of median[0..⌈n/5⌉-1]
3) medOfMed = kthSmallest(median[0..⌈n/5⌉-1], ⌈n/10⌉)
4) Partition arr[] around medOfMed and obtain its position.
pos = partition(arr, n, medOfMed)
5) If pos == k return medOfMed
6) If pos > k return kthSmallest(arr[l..pos-1], k)
7) If pos < k return kthSmallest(arr[pos+1..r], k-pos+l-1)

In above algorithm, last 3 steps are same as algorithm in previous post. The first four steps are used to obtain a good point for partitioning the array (to make sure that there are not too many elements either side of pivot).
Following is the implementation of above algorithm.

## C++

 // C++ implementation of worst case linear time algorithm// to find k'th smallest element#include#include#include using namespace std; int partition(int arr[], int l, int r, int k); // A simple function to find median of arr[].  This is called// only for an array of size 5 in this program.int findMedian(int arr[], int n){    sort(arr, arr+n);  // Sort the array    return arr[n/2];   // Return middle element} // Returns k'th smallest element in arr[l..r] in worst case// linear time. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCTint kthSmallest(int arr[], int l, int r, int k){    // If k is smaller than number of elements in array    if (k > 0 && k <= r - l + 1)    {        int n = r-l+1; // Number of elements in arr[l..r]         // Divide arr[] in groups of size 5, calculate median        // of every group and store it in median[] array.        int i, median[(n+4)/5]; // There will be floor((n+4)/5) groups;        for (i=0; i k-1)  // If position is more, recur for left            return kthSmallest(arr, l, pos-1, k);         // Else recur for right subarray        return kthSmallest(arr, pos+1, r, k-pos+l-1);    }     // If k is more than number of elements in array    return INT_MAX;} void swap(int *a, int *b){    int temp = *a;    *a = *b;    *b = temp;} // It searches for x in arr[l..r], and partitions the array// around x.int partition(int arr[], int l, int r, int x){    // Search for x in arr[l..r] and move it to end    int i;    for (i=l; i

## Java

 // Java implementation of worst// case linear time algorithm// to find k'th smallest elementimport java.util.*; class GFG{ // int partition(int arr[], int l, int r, int k); // A simple function to find median of arr[]. This is called// only for an array of size 5 in this program.static int findMedian(int arr[], int i,int n){    if(i <= n)        Arrays.sort(arr, i, n); // Sort the array    else        Arrays.sort(arr, n, i);    return arr[n/2]; // Return middle element} // Returns k'th smallest element// in arr[l..r] in worst case// linear time. ASSUMPTION: ALL// ELEMENTS IN ARR[] ARE DISTINCTstatic int kthSmallest(int arr[], int l, int r, int k){    // If k is smaller than    // number of elements in array    if (k > 0 && k <= r - l + 1)    {        int n = r - l + 1 ; // Number of elements in arr[l..r]         // Divide arr[] in groups of size 5,        // calculate median of every group        //  and store it in median[] array.        int i;                  // There will be floor((n+4)/5) groups;        int []median = new int[(n + 4) / 5];        for (i = 0; i < n/5; i++)            median[i] = findMedian(arr,l + i * 5, 5);                     // For last group with less than 5 elements        if (i*5 < n)        {            median[i] = findMedian(arr,l + i * 5, n % 5);            i++;        }         // Find median of all medians using recursive call.        // If median[] has only one element, then no need        // of recursive call        int medOfMed = (i == 1)? median[i - 1]:                                kthSmallest(median, 0, i - 1, i / 2);         // Partition the array around a random element and        // get position of pivot element in sorted array        int pos = partition(arr, l, r, medOfMed);         // If position is same as k        if (pos-l == k - 1)            return arr[pos];        if (pos-l > k - 1) // If position is more, recur for left            return kthSmallest(arr, l, pos - 1, k);         // Else recur for right subarray        return kthSmallest(arr, pos + 1, r, k - pos + l - 1);    }     // If k is more than number of elements in array    return Integer.MAX_VALUE;} static int[] swap(int []arr, int i, int j){    int temp = arr[i];    arr[i] = arr[j];    arr[j] = temp;    return arr;} // It searches for x in arr[l..r], and// partitions the array around x.static int partition(int arr[], int l,                        int r, int x){    // Search for x in arr[l..r] and move it to end    int i;    for (i = l; i < r; i++)        if (arr[i] == x)        break;    swap(arr, i, r);     // Standard partition algorithm    i = l;    for (int j = l; j <= r - 1; j++)    {        if (arr[j] <= x)        {            swap(arr, i, j);            i++;        }    }    swap(arr, i, r);    return i;} // Driver codepublic static void main(String[] args){    int arr[] = {12, 3, 5, 7, 4, 19, 26};    int n = arr.length, k = 3;    System.out.println("K'th smallest element is "        + kthSmallest(arr, 0, n - 1, k));}} // This code has been contributed by 29AjayKumar

## Python3

 # Python3 implementation of worst case # linear time algorithm to find# k'th smallest element # Returns k'th smallest element in arr[l..r]# in worst case linear time.# ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCTdef kthSmallest(arr, l, r, k):         # If k is smaller than number of    # elements in array    if (k > 0 and k <= r - l + 1):                 # Number of elements in arr[l..r]        n = r - l + 1         # Divide arr[] in groups of size 5,        # calculate median of every group        # and store it in median[] array.        median = []         i = 0        while (i < n // 5):            median.append(findMedian(arr, l + i * 5, 5))            i += 1         # For last group with less than 5 elements        if (i * 5 < n):            median.append(findMedian(arr, l + i * 5,                                              n % 5))            i += 1         # Find median of all medians using recursive call.        # If median[] has only one element, then no need        # of recursive call        if i == 1:            medOfMed = median[i - 1]        else:            medOfMed = kthSmallest(median, 0,                                   i - 1, i // 2)         # Partition the array around a medOfMed        # element and get position of pivot        # element in sorted array        pos = partition(arr, l, r, medOfMed)         # If position is same as k        if (pos - l == k - 1):            return arr[pos]        if (pos - l > k - 1): # If position is more,                              # recur for left subarray            return kthSmallest(arr, l, pos - 1, k)         # Else recur for right subarray        return kthSmallest(arr, pos + 1, r,                           k - pos + l - 1)     # If k is more than the number of    # elements in the array    return 999999999999 def swap(arr, a, b):    temp = arr[a]    arr[a] = arr[b]    arr[b] = temp # It searches for x in arr[l..r], # and partitions the array around x.def partition(arr, l, r, x):    for i in range(l, r):        if arr[i] == x:            swap(arr, r, i)            break     x = arr[r]    i = l    for j in range(l, r):        if (arr[j] <= x):            swap(arr, i, j)            i += 1    swap(arr, i, r)    return i # A simple function to find# median of arr[] from index l to l+ndef findMedian(arr, l, n):    lis = []    for i in range(l, l + n):        lis.append(arr[i])             # Sort the array    lis.sort()     # Return the middle element    return lis[n // 2] # Driver Codeif __name__ == '__main__':     arr = [12, 3, 5, 7, 4, 19, 26]    n = len(arr)    k = 3    print("K'th smallest element is",           kthSmallest(arr, 0, n - 1, k)) # This code is contributed by Ashutosh450

## C#

 // C# implementation of worst// case linear time algorithm// to find k'th smallest elementusing System; class GFG{ // int partition(int arr[], int l, int r, int k); // A simple function to find median of arr[]. This is called// only for an array of size 5 in this program.static int findMedian(int []arr, int i, int n){    if(i <= n)        Array.Sort(arr, i, n); // Sort the array    else        Array.Sort(arr, n, i);    return arr[n/2]; // Return middle element} // Returns k'th smallest element// in arr[l..r] in worst case// linear time. ASSUMPTION: ALL// ELEMENTS IN ARR[] ARE DISTINCTstatic int kthSmallest(int []arr, int l,                            int r, int k){    // If k is smaller than    // number of elements in array    if (k > 0 && k <= r - l + 1)    {        int n = r - l + 1 ; // Number of elements in arr[l..r]         // Divide arr[] in groups of size 5,        // calculate median of every group        // and store it in median[] array.        int i;                 // There will be floor((n+4)/5) groups;        int []median = new int[(n + 4) / 5];        for (i = 0; i < n/5; i++)            median[i] = findMedian(arr, l + i * 5, 5);                     // For last group with less than 5 elements        if (i*5 < n)        {            median[i] = findMedian(arr,l + i * 5, n % 5);            i++;        }         // Find median of all medians using recursive call.        // If median[] has only one element, then no need        // of recursive call        int medOfMed = (i == 1)? median[i - 1]:                                kthSmallest(median, 0, i - 1, i / 2);         // Partition the array around a random element and        // get position of pivot element in sorted array        int pos = partition(arr, l, r, medOfMed);         // If position is same as k        if (pos-l == k - 1)            return arr[pos];        if (pos-l > k - 1) // If position is more, recur for left            return kthSmallest(arr, l, pos - 1, k);         // Else recur for right subarray        return kthSmallest(arr, pos + 1, r, k - pos + l - 1);    }     // If k is more than number of elements in array    return int.MaxValue;} static int[] swap(int []arr, int i, int j){    int temp = arr[i];    arr[i] = arr[j];    arr[j] = temp;    return arr;} // It searches for x in arr[l..r], and// partitions the array around x.static int partition(int []arr, int l,                        int r, int x){    // Search for x in arr[l..r] and move it to end    int i;    for (i = l; i < r; i++)        if (arr[i] == x)        break;    swap(arr, i, r);     // Standard partition algorithm    i = l;    for (int j = l; j <= r - 1; j++)    {        if (arr[j] <= x)        {            swap(arr, i, j);            i++;        }    }    swap(arr, i, r);    return i;} // Driver codepublic static void Main(String[] args){    int []arr = {12, 3, 5, 7, 4, 19, 26};    int n = arr.Length, k = 3;    Console.WriteLine("K'th smallest element is "        + kthSmallest(arr, 0, n - 1, k));}} // This code contributed by Rajput-Ji

## Javascript

 

Output:

K'th smallest element is 5

Time Complexity:
The worst case time complexity of the above algorithm is O(n). Let us analyze all steps.
The steps 1) and 2) take O(n) time as finding median of an array of size 5 takes O(1) time and there are n/5 arrays of size 5.
The step 3) takes T(n/5) time. The step 4 is standard partition and takes O(n) time.
The interesting steps are 6) and 7). At most, one of them is executed. These are recursive steps. What is the worst case size of these recursive calls. The answer is maximum number of elements greater than medOfMed (obtained in step 3) or maximum number of elements smaller than medOfMed.
How many elements are greater than medOfMed and how many are smaller?
At least half of the medians found in step 2 are greater than or equal to medOfMed. Thus, at least half of the n/5 groups contribute 3 elements that are greater than medOfMed, except for the one group that has fewer than 5 elements. Therefore, the number of elements greater than medOfMed is at least. Similarly, the number of elements that are less than medOfMed is at least 3n/10 – 6. In the worst case, the function recurs for at most n – (3n/10 – 6) which is 7n/10 + 6 elements.
Note that 7n/10 + 6 20 20 and that any input of 80 or fewer elements requires O(1) time. We can therefore obtain the recurrence We show that the running time is linear by substitution. Assume that T(n) cn for some constant c and all n > 80. Substituting this inductive hypothesis into the right-hand side of the recurrence yields

T(n)  <= cn/5 + c(7n/10 + 6) + O(n)
<= cn/5 + c + 7cn/10 + 6c + O(n)
<= 9cn/10 + 7c + O(n)
<= cn, `

since we can pick c large enough so that c(n/10 – 7) is larger than the function described by the O(n) term for all n > 80. The worst-case running time of is therefore linear (Source: http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap10.htm ).
Note that the above algorithm is linear in worst case, but the constants are very high for this algorithm. Therefore, this algorithm doesn’t work well in practical situations, randomized quickSelect works much better and preferred.
Sources:
MIT Video Lecture on Order Statistics, Median
Introduction to Algorithms by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L.