Kth smallest element from an array of intervals
Given an array of intervals arr[] of size N, the task is to find the Kth smallest element among all the elements within the intervals of the given array.
Examples:
Input : arr[] = {{5, 11}, {10, 15}, {12, 20}}, K =12
Output: 13
Explanation: Elements in the given array of intervals are: {5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 18, 19, 20}.
Therefore, the Kth(=12th) smallest element is 13.Input: arr[] = {{5, 11}, {10, 15}, {12, 20}}, K = 7
Output:10
Naive Approach: The simplest approach is to generate a new array consisting of all the elements from the array of intervals. Sort the new array. Finally, return the Kth smallest element of the array.
Time Complexity: O(X*Log(X)), where X is the total number of elements in the intervals.
Auxiliary Space: O(X*log(X))
Efficient approach: To optimize the above approach, the idea is to use MinHeap. Follow the steps below to solve the problem.
- Create a MinHeap, say pq to store all the intervals of the given array so that it returns the minimum element among all the elements of remaining intervals in O(1).
- Pop the minimum interval from the MinHeap and check if the minimum element of the popped interval is less than the maximum element of the popped interval. If found to be true, then insert a new interval {minimum element of popped interval + 1, maximum element of the popped interval}.
- Repeat the above step K – 1 times.
- Finally, return the minimum element of the popped interval.
Below is the implementation of the above approach:
C++14
// C++ Program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to get the Kth smallest // element from an array of intervals int KthSmallestNum(pair< int , int > arr[], int n, int k) { // Store all the intervals so that it // returns the minimum element in O(1) priority_queue<pair< int , int >, vector<pair< int , int > >, greater<pair< int , int > > > pq; // Insert all Intervals into the MinHeap for ( int i = 0; i < n; i++) { pq.push({ arr[i].first, arr[i].second }); } // Stores the count of // popped elements int cnt = 1; // Iterate over MinHeap while (cnt < k) { // Stores minimum element // from all remaining intervals pair< int , int > interval = pq.top(); // Remove minimum element pq.pop(); // Check if the minimum of the current // interval is less than the maximum // of the current interval if (interval.first < interval.second) { // Insert new interval pq.push( { interval.first + 1, interval.second }); } cnt++; } return pq.top().first; } // Driver Code int main() { // Intervals given pair< int , int > arr[] = { { 5, 11 }, { 10, 15 }, { 12, 20 } }; // Size of the arr int n = sizeof (arr) / sizeof (arr[0]); int k = 12; cout << KthSmallestNum(arr, n, k); } |
Java
// Java program to implement // the above approach import java.util.*; import java.io.*; class GFG{ // Function to get the Kth smallest // element from an array of intervals public static int KthSmallestNum( int arr[][], int n, int k) { // Store all the intervals so that it // returns the minimum element in O(1) PriorityQueue< int []> pq = new PriorityQueue<>( (a, b) -> a[ 0 ] - b[ 0 ]); // Insert all Intervals into the MinHeap for ( int i = 0 ; i < n; i++) { pq.add( new int []{arr[i][ 0 ], arr[i][ 1 ]}); } // Stores the count of // popped elements int cnt = 1 ; // Iterate over MinHeap while (cnt < k) { // Stores minimum element // from all remaining intervals int [] interval = pq.poll(); // Check if the minimum of the current // interval is less than the maximum // of the current interval if (interval[ 0 ] < interval[ 1 ]) { // Insert new interval pq.add( new int []{interval[ 0 ] + 1 , interval[ 1 ]}); } cnt++; } return pq.peek()[ 0 ]; } // Driver Code public static void main(String args[]) { // Intervals given int arr[][] = { { 5 , 11 }, { 10 , 15 }, { 12 , 20 } }; // Size of the arr int n = arr.length; int k = 12 ; System.out.println(KthSmallestNum(arr, n, k)); } } // This code is contributed by hemanth gadarla |
Python3
# Python3 program to implement # the above approach # Function to get the Kth smallest # element from an array of intervals def KthSmallestNum(arr, n, k): # Store all the intervals so that it # returns the minimum element in O(1) pq = [] # Insert all Intervals into the MinHeap for i in range (n): pq.append([arr[i][ 0 ], arr[i][ 1 ]]) # Stores the count of # popped elements cnt = 1 # Iterate over MinHeap while (cnt < k): # Stores minimum element # from all remaining intervals pq.sort(reverse = True ) interval = pq[ 0 ] # Remove minimum element pq.remove(pq[ 0 ]) # Check if the minimum of the current # interval is less than the maximum # of the current interval if (interval[ 0 ] < interval[ 1 ]): # Insert new interval pq.append([interval[ 0 ] + 1 , interval[ 1 ]]) cnt + = 1 pq.sort(reverse = True ) return pq[ 0 ][ 0 ] + 1 # Driver Code if __name__ = = '__main__' : # Intervals given arr = [ [ 5 , 11 ], [ 10 , 15 ], [ 12 , 20 ] ] # Size of the arr n = len (arr) k = 12 print (KthSmallestNum(arr, n, k)) # This code is contributed by SURENDRA_GANGWAR |
C#
// C# Program to implement // the above approach using System; using System.Collections; using System.Collections.Generic; class GFG { // Function to get the Kth smallest // element from an array of intervals static int KthSmallestNum( int [,] arr, int n, int k) { // Store all the intervals so that it // returns the minimum element in O(1) ArrayList pq = new ArrayList(); // Insert all Intervals into the MinHeap for ( int i = 0; i < n; i++) { pq.Add( new Tuple< int , int >(arr[i,0], arr[i,1])); } // Stores the count of // popped elements int cnt = 1; // Iterate over MinHeap while (cnt < k) { // Stores minimum element // from all remaining intervals pq.Sort(); pq.Reverse(); Tuple< int , int > interval = (Tuple< int , int >)pq[0]; // Remove minimum element pq.RemoveAt(0); // Check if the minimum of the current // interval is less than the maximum // of the current interval if (interval.Item1 < interval.Item2) { // Insert new interval pq.Add( new Tuple< int , int >(interval.Item1 + 1, interval.Item2)); } cnt += 1; } pq.Sort(); pq.Reverse(); return ((Tuple< int , int >)pq[0]).Item1 + 1; } // Driver code static void Main() { // Intervals given int [,] arr = { { 5, 11 }, { 10, 15 }, { 12, 20 } }; // Size of the arr int n = arr.GetLength(0); int k = 12; Console.WriteLine(KthSmallestNum(arr, n, k)); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to get the Kth smallest // element from an array of intervals function KthSmallestNum(arr, n, k) { // Store all the intervals so that it // returns the minimum element in O(1) var pq = []; // Insert all Intervals into the MinHeap for ( var i = 0; i < n; i++) { pq.push([arr[i][0], arr[i][1]]); } // Stores the count of // popped elements var cnt = 1; // Iterate over MinHeap while (cnt < k) { // Stores minimum element // from all remaining intervals pq.sort((a,b)=>{ if (a[0]==b[0]) return a[1]-b[1] return a[0]-b[0] }); var interval = pq[0]; // Remove minimum element pq.shift(); // Check if the minimum of the current // interval is less than the maximum // of the current interval if (interval[0] < interval[1]) { // Insert new interval pq.push([interval[0] + 1, interval[1]]); } cnt += 1; } pq.sort((a,b) => { if (a[0]==b[0]) return a[1]-b[1] return a[0]-b[0] }); return (pq[0])[0]; } // Driver code // Intervals given var arr = [ [ 5, 11 ], [ 10, 15 ], [ 12, 20 ] ]; // Size of the arr var n = arr.length; var k = 12; document.write(KthSmallestNum(arr, n, k)); </script> |
13
Time Complexity: O(K*logK)
Auxiliary Space: O(N)
Please Login to comment...