Skip to content
Related Articles
Open in App
Not now

Related Articles

Kth prime number greater than N

Improve Article
Save Article
  • Last Updated : 06 Jun, 2021
Improve Article
Save Article

Given a number N, the task is to print the Kth prime number greater than N. 
Note: N and K are so given that answers are always less than 10^6. 
Examples: 
 

Input: N = 5, K = 5
Output: 19

Input: N = 10, K = 3
Output: 17

 

A simple solution for this problem is to iterate from n+1 to 10^6 and for every number, check if it is prime and print the Kth prime number. This solution looks fine if there is only one query. But not efficient if there are multiple queries.
An efficient solution for this problem is to generate all primes less than 10^6 using Sieve of Eratosthenes and iterate from n+1 to 10^6 and then print the Kth prime number. 
 

C++




// CPP program to print the Kth prime greater than N
#include <bits/stdc++.h>
using namespace std;
 
// set the MAX_SIZE of the array to 10^6
const int MAX_SIZE = 1e6;
 
// initialize the prime array
bool prime[MAX_SIZE + 1];
 
void sieve()
{
 
    // set all numbers as prime for time being
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p <= MAX_SIZE; p++) {
 
        // if prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
 
            // update all multiples of p
            for (int i = p * p; i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
// Function to find the kth prime greater than n
int kthPrimeGreaterThanN(int n, int k)
{
 
    int res = -1;
    // looping through the numbers greater than n
    for (int i = n + 1; i < MAX_SIZE; i++) {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0) {
            res = i;
            break;
        }
    }
 
    return res;
}
 
// Driver code
int main()
{
 
    sieve();
    int n = 2, k = 15;
 
    // Print the kth prime number greater than n
    cout << kthPrimeGreaterThanN(n, k);
    return 0;
}

Java




// Java program to print the
// Kth prime greater than N
import java.util.*;
 
class GFG
{
 
// set the MAX_SIZE of the array to 10^6
static int MAX_SIZE = (int) 1e6;
 
// initialize the prime array
static boolean []prime = new boolean[MAX_SIZE + 1];
 
static void sieve()
{
 
    // set all numbers as prime for time being
    Arrays.fill(prime, true);
 
    for (int p = 2; p * p <= MAX_SIZE; p++)
    {
 
        // if prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // update all multiples of p
            for (int i = p * p;
                     i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the kth prime greater than n
static int kthPrimeGreaterThanN(int n, int k)
{
 
    int res = -1;
     
    // looping through the numbers greater than n
    for (int i = n + 1; i < MAX_SIZE; i++)
    {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0)
        {
            res = i;
            break;
        }
    }
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    sieve();
    int n = 2, k = 15;
 
    // Print the kth prime number greater than n
    System.out.println(kthPrimeGreaterThanN(n, k));
}
}
 
// This code is contributed by 29AjayKumar

Python 3




# Python 3 program to print the Kth
# prime greater than N
 
# set the MAX_SIZE of the array to 10^6
MAX_SIZE = int(1e6)
 
# initialize the prime array
prime = [True] * (MAX_SIZE + 1)
 
# Code for Sieve of Eratosthenes
def sieve():
    p = 2
     
    while (p * p <= MAX_SIZE):
         
        # if prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
             
            # update all multiples of p
            for i in range(p * p, MAX_SIZE, p):
                prime[i] = False
        p += 1
 
# Function to find the kth prime
# greater than n
def kthPrimeGreaterThanN(n, k):
    res = -1
     
    # looping through the numbers
    # greater than n
    for i in range(n + 1, MAX_SIZE):
         
        # decrement k if i is prime
        if (prime[i] == True):
            k -= 1
         
        # store the kth prime greater than n
        if (k == 0):
            res = i
            break
     
    return res
 
# Driver Code
if __name__=='__main__':
    n = 2
    k = 15
    sieve()
     
    # Print the kth prime number
    # greater than n
    print(kthPrimeGreaterThanN(n, k))
     
# This code is contributed by Rupesh Rao

C#




// C# program to print the
// Kth prime greater than N
using System;
using System.Collections.Generic;
     
class GFG
{
 
// set the MAX_SIZE of the array to 10^6
static int MAX_SIZE = (int) 1e6;
 
// initialize the prime array
static Boolean []prime = new Boolean[MAX_SIZE + 1];
 
static void sieve()
{
 
    // set all numbers as prime for time being
    for (int i = 0; i < MAX_SIZE + 1; i++)
        prime[i] = true;
 
    for (int p = 2; p * p <= MAX_SIZE; p++)
    {
 
        // if prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // update all multiples of p
            for (int i = p * p;
                     i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the kth prime greater than n
static int kthPrimeGreaterThanN(int n, int k)
{
 
    int res = -1;
     
    // looping through the numbers greater than n
    for (int i = n + 1; i < MAX_SIZE; i++)
    {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0)
        {
            res = i;
            break;
        }
    }
    return res;
}
 
// Driver code
public static void Main(String[] args)
{
    sieve();
    int n = 2, k = 15;
 
    // Print the kth prime number greater than n
    Console.WriteLine(kthPrimeGreaterThanN(n, k));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript program to print
// the Kth prime greater than N
 
// set the MAX_SIZE of the array to 10^6
var MAX_SIZE = 1000006;
 
// initialize the prime array
var prime = Array(MAX_SIZE + 1).fill(true);
 
function sieve()
{
 
 
    for (var p = 2; p * p <= MAX_SIZE; p++)
    {
 
        // if prime[p] is not changed,
        then it is a prime
        if (prime[p] == true) {
 
            // update all multiples of p
            for (var i = p * p; i <= MAX_SIZE; i += p)
                prime[i] = false;
        }
    }
}
// Function to find the kth prime greater than n
function kthPrimeGreaterThanN(n, k)
{
 
    var res = -1;
    // looping through the numbers greater than n
    for (var i = n + 1; i < MAX_SIZE; i++)
    {
 
        // decrement k if i is prime
        if (prime[i] == true)
            k--;
 
        // store the kth prime greater than n
        if (k == 0) {
            res = i;
            break;
        }
    }
 
    return res;
}
 
// Driver code
sieve();
var n = 2, k = 15;
// Print the kth prime number greater than n
document.write( kthPrimeGreaterThanN(n, k));
 
</script>

Output: 

53

 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!