 Open in App
Not now

# Kth prime number greater than N

• Last Updated : 06 Jun, 2021

Given a number N, the task is to print the Kth prime number greater than N.
Note: N and K are so given that answers are always less than 10^6.
Examples:

```Input: N = 5, K = 5
Output: 19

Input: N = 10, K = 3
Output: 17```

A simple solution for this problem is to iterate from n+1 to 10^6 and for every number, check if it is prime and print the Kth prime number. This solution looks fine if there is only one query. But not efficient if there are multiple queries.
An efficient solution for this problem is to generate all primes less than 10^6 using Sieve of Eratosthenes and iterate from n+1 to 10^6 and then print the Kth prime number.

## C++

 `// CPP program to print the Kth prime greater than N``#include ``using` `namespace` `std;` `// set the MAX_SIZE of the array to 10^6``const` `int` `MAX_SIZE = 1e6;` `// initialize the prime array``bool` `prime[MAX_SIZE + 1];` `void` `sieve()``{` `    ``// set all numbers as prime for time being``    ``memset``(prime, ``true``, ``sizeof``(prime));` `    ``for` `(``int` `p = 2; p * p <= MAX_SIZE; p++) {` `        ``// if prime[p] is not changed, then it is a prime``        ``if` `(prime[p] == ``true``) {` `            ``// update all multiples of p``            ``for` `(``int` `i = p * p; i <= MAX_SIZE; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}``}``// Function to find the kth prime greater than n``int` `kthPrimeGreaterThanN(``int` `n, ``int` `k)``{` `    ``int` `res = -1;``    ``// looping through the numbers greater than n``    ``for` `(``int` `i = n + 1; i < MAX_SIZE; i++) {` `        ``// decrement k if i is prime``        ``if` `(prime[i] == ``true``)``            ``k--;` `        ``// store the kth prime greater than n``        ``if` `(k == 0) {``            ``res = i;``            ``break``;``        ``}``    ``}` `    ``return` `res;``}` `// Driver code``int` `main()``{` `    ``sieve();``    ``int` `n = 2, k = 15;` `    ``// Print the kth prime number greater than n``    ``cout << kthPrimeGreaterThanN(n, k);``    ``return` `0;``}`

## Java

 `// Java program to print the``// Kth prime greater than N``import` `java.util.*;` `class` `GFG``{` `// set the MAX_SIZE of the array to 10^6``static` `int` `MAX_SIZE = (``int``) 1e6;` `// initialize the prime array``static` `boolean` `[]prime = ``new` `boolean``[MAX_SIZE + ``1``];` `static` `void` `sieve()``{` `    ``// set all numbers as prime for time being``    ``Arrays.fill(prime, ``true``);` `    ``for` `(``int` `p = ``2``; p * p <= MAX_SIZE; p++)``    ``{` `        ``// if prime[p] is not changed,``        ``// then it is a prime``        ``if` `(prime[p] == ``true``)``        ``{` `            ``// update all multiples of p``            ``for` `(``int` `i = p * p;``                     ``i <= MAX_SIZE; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}``}` `// Function to find the kth prime greater than n``static` `int` `kthPrimeGreaterThanN(``int` `n, ``int` `k)``{` `    ``int` `res = -``1``;``    ` `    ``// looping through the numbers greater than n``    ``for` `(``int` `i = n + ``1``; i < MAX_SIZE; i++)``    ``{` `        ``// decrement k if i is prime``        ``if` `(prime[i] == ``true``)``            ``k--;` `        ``// store the kth prime greater than n``        ``if` `(k == ``0``)``        ``{``            ``res = i;``            ``break``;``        ``}``    ``}``    ``return` `res;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``sieve();``    ``int` `n = ``2``, k = ``15``;` `    ``// Print the kth prime number greater than n``    ``System.out.println(kthPrimeGreaterThanN(n, k));``}``}` `// This code is contributed by 29AjayKumar`

## Python 3

 `# Python 3 program to print the Kth``# prime greater than N` `# set the MAX_SIZE of the array to 10^6``MAX_SIZE ``=` `int``(``1e6``)` `# initialize the prime array``prime ``=` `[``True``] ``*` `(MAX_SIZE ``+` `1``)` `# Code for Sieve of Eratosthenes``def` `sieve():``    ``p ``=` `2``    ` `    ``while` `(p ``*` `p <``=` `MAX_SIZE):``        ` `        ``# if prime[p] is not changed,``        ``# then it is a prime``        ``if` `(prime[p] ``=``=` `True``):``            ` `            ``# update all multiples of p``            ``for` `i ``in` `range``(p ``*` `p, MAX_SIZE, p):``                ``prime[i] ``=` `False``        ``p ``+``=` `1` `# Function to find the kth prime``# greater than n``def` `kthPrimeGreaterThanN(n, k):``    ``res ``=` `-``1``    ` `    ``# looping through the numbers``    ``# greater than n``    ``for` `i ``in` `range``(n ``+` `1``, MAX_SIZE):``        ` `        ``# decrement k if i is prime``        ``if` `(prime[i] ``=``=` `True``):``            ``k ``-``=` `1``        ` `        ``# store the kth prime greater than n``        ``if` `(k ``=``=` `0``):``            ``res ``=` `i``            ``break``    ` `    ``return` `res` `# Driver Code``if` `__name__``=``=``'__main__'``:``    ``n ``=` `2``    ``k ``=` `15``    ``sieve()``    ` `    ``# Print the kth prime number``    ``# greater than n``    ``print``(kthPrimeGreaterThanN(n, k))``    ` `# This code is contributed by Rupesh Rao`

## C#

 `// C# program to print the``// Kth prime greater than N``using` `System;``using` `System.Collections.Generic;``    ` `class` `GFG``{` `// set the MAX_SIZE of the array to 10^6``static` `int` `MAX_SIZE = (``int``) 1e6;` `// initialize the prime array``static` `Boolean []prime = ``new` `Boolean[MAX_SIZE + 1];` `static` `void` `sieve()``{` `    ``// set all numbers as prime for time being``    ``for` `(``int` `i = 0; i < MAX_SIZE + 1; i++)``        ``prime[i] = ``true``;` `    ``for` `(``int` `p = 2; p * p <= MAX_SIZE; p++)``    ``{` `        ``// if prime[p] is not changed,``        ``// then it is a prime``        ``if` `(prime[p] == ``true``)``        ``{` `            ``// update all multiples of p``            ``for` `(``int` `i = p * p;``                     ``i <= MAX_SIZE; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}``}` `// Function to find the kth prime greater than n``static` `int` `kthPrimeGreaterThanN(``int` `n, ``int` `k)``{` `    ``int` `res = -1;``    ` `    ``// looping through the numbers greater than n``    ``for` `(``int` `i = n + 1; i < MAX_SIZE; i++)``    ``{` `        ``// decrement k if i is prime``        ``if` `(prime[i] == ``true``)``            ``k--;` `        ``// store the kth prime greater than n``        ``if` `(k == 0)``        ``{``            ``res = i;``            ``break``;``        ``}``    ``}``    ``return` `res;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``sieve();``    ``int` `n = 2, k = 15;` `    ``// Print the kth prime number greater than n``    ``Console.WriteLine(kthPrimeGreaterThanN(n, k));``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``

Output:

`53`

My Personal Notes arrow_drop_up