Kth prime number greater than N
Given a number N, the task is to print the Kth prime number greater than N.
Note: N and K are so given that answers are always less than 10^6.
Examples:
Input: N = 5, K = 5 Output: 19 Input: N = 10, K = 3 Output: 17
A simple solution for this problem is to iterate from n+1 to 10^6 and for every number, check if it is prime and print the Kth prime number. This solution looks fine if there is only one query. But not efficient if there are multiple queries.
An efficient solution for this problem is to generate all primes less than 10^6 using Sieve of Eratosthenes and iterate from n+1 to 10^6 and then print the Kth prime number.
C++
// CPP program to print the Kth prime greater than N #include <bits/stdc++.h> using namespace std; // set the MAX_SIZE of the array to 10^6 const int MAX_SIZE = 1e6; // initialize the prime array bool prime[MAX_SIZE + 1]; void sieve() { // set all numbers as prime for time being memset (prime, true , sizeof (prime)); for ( int p = 2; p * p <= MAX_SIZE; p++) { // if prime[p] is not changed, then it is a prime if (prime[p] == true ) { // update all multiples of p for ( int i = p * p; i <= MAX_SIZE; i += p) prime[i] = false ; } } } // Function to find the kth prime greater than n int kthPrimeGreaterThanN( int n, int k) { int res = -1; // looping through the numbers greater than n for ( int i = n + 1; i < MAX_SIZE; i++) { // decrement k if i is prime if (prime[i] == true ) k--; // store the kth prime greater than n if (k == 0) { res = i; break ; } } return res; } // Driver code int main() { sieve(); int n = 2, k = 15; // Print the kth prime number greater than n cout << kthPrimeGreaterThanN(n, k); return 0; } |
Java
// Java program to print the // Kth prime greater than N import java.util.*; class GFG { // set the MAX_SIZE of the array to 10^6 static int MAX_SIZE = ( int ) 1e6; // initialize the prime array static boolean []prime = new boolean [MAX_SIZE + 1 ]; static void sieve() { // set all numbers as prime for time being Arrays.fill(prime, true ); for ( int p = 2 ; p * p <= MAX_SIZE; p++) { // if prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // update all multiples of p for ( int i = p * p; i <= MAX_SIZE; i += p) prime[i] = false ; } } } // Function to find the kth prime greater than n static int kthPrimeGreaterThanN( int n, int k) { int res = - 1 ; // looping through the numbers greater than n for ( int i = n + 1 ; i < MAX_SIZE; i++) { // decrement k if i is prime if (prime[i] == true ) k--; // store the kth prime greater than n if (k == 0 ) { res = i; break ; } } return res; } // Driver code public static void main(String[] args) { sieve(); int n = 2 , k = 15 ; // Print the kth prime number greater than n System.out.println(kthPrimeGreaterThanN(n, k)); } } // This code is contributed by 29AjayKumar |
Python 3
# Python 3 program to print the Kth # prime greater than N # set the MAX_SIZE of the array to 10^6 MAX_SIZE = int ( 1e6 ) # initialize the prime array prime = [ True ] * (MAX_SIZE + 1 ) # Code for Sieve of Eratosthenes def sieve(): p = 2 while (p * p < = MAX_SIZE): # if prime[p] is not changed, # then it is a prime if (prime[p] = = True ): # update all multiples of p for i in range (p * p, MAX_SIZE, p): prime[i] = False p + = 1 # Function to find the kth prime # greater than n def kthPrimeGreaterThanN(n, k): res = - 1 # looping through the numbers # greater than n for i in range (n + 1 , MAX_SIZE): # decrement k if i is prime if (prime[i] = = True ): k - = 1 # store the kth prime greater than n if (k = = 0 ): res = i break return res # Driver Code if __name__ = = '__main__' : n = 2 k = 15 sieve() # Print the kth prime number # greater than n print (kthPrimeGreaterThanN(n, k)) # This code is contributed by Rupesh Rao |
C#
// C# program to print the // Kth prime greater than N using System; using System.Collections.Generic; class GFG { // set the MAX_SIZE of the array to 10^6 static int MAX_SIZE = ( int ) 1e6; // initialize the prime array static Boolean []prime = new Boolean[MAX_SIZE + 1]; static void sieve() { // set all numbers as prime for time being for ( int i = 0; i < MAX_SIZE + 1; i++) prime[i] = true ; for ( int p = 2; p * p <= MAX_SIZE; p++) { // if prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // update all multiples of p for ( int i = p * p; i <= MAX_SIZE; i += p) prime[i] = false ; } } } // Function to find the kth prime greater than n static int kthPrimeGreaterThanN( int n, int k) { int res = -1; // looping through the numbers greater than n for ( int i = n + 1; i < MAX_SIZE; i++) { // decrement k if i is prime if (prime[i] == true ) k--; // store the kth prime greater than n if (k == 0) { res = i; break ; } } return res; } // Driver code public static void Main(String[] args) { sieve(); int n = 2, k = 15; // Print the kth prime number greater than n Console.WriteLine(kthPrimeGreaterThanN(n, k)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to print // the Kth prime greater than N // set the MAX_SIZE of the array to 10^6 var MAX_SIZE = 1000006; // initialize the prime array var prime = Array(MAX_SIZE + 1).fill( true ); function sieve() { for ( var p = 2; p * p <= MAX_SIZE; p++) { // if prime[p] is not changed, then it is a prime if (prime[p] == true ) { // update all multiples of p for ( var i = p * p; i <= MAX_SIZE; i += p) prime[i] = false ; } } } // Function to find the kth prime greater than n function kthPrimeGreaterThanN(n, k) { var res = -1; // looping through the numbers greater than n for ( var i = n + 1; i < MAX_SIZE; i++) { // decrement k if i is prime if (prime[i] == true ) k--; // store the kth prime greater than n if (k == 0) { res = i; break ; } } return res; } // Driver code sieve(); var n = 2, k = 15; // Print the kth prime number greater than n document.write( kthPrimeGreaterThanN(n, k)); </script> |
Output:
53
Please Login to comment...