Kth node in Diagonal Traversal of Binary Tree

Given a binary tree and a value K. The task is to print the k-th node in the diagonal traversal of the binary tree. If no such node exists then print -1.

Examples:

Input : 
         8
       /   \
      3    10
     /    /  \
    1    6   14
        / \  /
       4  7 13
k = 5
Output : 6
Diagonal Traversal of the above tree is:
8 10 14
3 6 7 13
1 4

Input :
       1
      / \
     2   3
    /     \
   4       5
k = 7   
Output : -1

Approach: The idea is to perform the diagonal traversal of the binary tree until K nodes are visited in the diagonal traversal. While traversing for each node visited decrement the value of variable K and return the current node when the value of K becomes zero. If the diagonal traversal does not contain at least K nodes, return -1.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print kth node
// in the diagonal traversal of a binary tree
  
#include <bits/stdc++.h>
using namespace std;
  
// A binary tree node has data, pointer to left
child and a pointer to right child struct Node {
    int data;
    Node *left, *right;
};
  
// Helper function that allocates a new node
Node* newNode(int data)
{
    Node* node = (Node*)malloc(sizeof(Node));
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
  
// Iterative function to print kth node
// in diagonal traversal of binary tree
int diagonalPrint(Node* root, int k)
{
    // Base cases
    if (root == NULL || k == 0)
        return -1;
  
    int ans = -1;
    queue<Node*> q;
  
    // Push root node
    q.push(root);
  
    // Push delimiter NULL
    q.push(NULL);
  
    while (!q.empty()) {
        Node* temp = q.front();
        q.pop();
  
        if (temp == NULL) {
            if (q.empty()) {
                // If kth node exists then return
                // the answer
                if (k == 0)
                    return ans;
  
                // If kth node doesnt exists
                // then break from the while loop
                else
                    break;
            }
            q.push(NULL);
        }
        else {
            while (temp) {
                // If the required kth node
                // has been found then return the answer
                if (k == 0)
                    return ans;
  
                k--;
  
                // Update the value of variable ans
                // each time
                ans = temp->data;
  
                if (temp->left)
                    q.push(temp->left);
  
                temp = temp->right;
            }
        }
    }
  
    // If kth node doesnt exists then
    // return -1
    return -1;
}
  
// Driver Code
int main()
{
    Node* root = newNode(8);
    root->left = newNode(3);
    root->right = newNode(10);
    root->left->left = newNode(1);
    root->left->right = newNode(6);
    root->right->right = newNode(14);
    root->right->right->left = newNode(13);
    root->left->right->left = newNode(4);
    root->left->right->right = newNode(7);
  
    int k = 9;
  
    cout << diagonalPrint(root, k);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print kth node 
// in the diagonal traversal of a binary tree 
import java.util.*;
  
class GFG
{
      
// A binary tree node has data, pointer to left 
//child and a pointer to right child
static class Node 
    int data; 
    Node left, right; 
}; 
  
// Helper function that allocates a new node 
static Node newNode(int data) 
    Node node = new Node(); 
    node.data = data; 
    node.left = node.right = null
    return (node); 
  
// Iterative function to print kth node 
// in diagonal traversal of binary tree 
static int diagonalPrint(Node root, int k) 
    // Base cases 
    if (root == null || k == 0
        return -1
  
    int ans = -1
    Queue<Node> q = new LinkedList<Node>(); 
  
    // add root node 
    q.add(root); 
  
    // add delimiter null 
    q.add(null); 
  
    while (q.size() > 0)
    
        Node temp = q.peek(); 
        q.remove(); 
  
        if (temp == null)
        
            if (q.size() == 0
            
                // If kth node exists then return 
                // the answer 
                if (k == 0
                    return ans; 
  
                // If kth node doesnt exists 
                // then break from the while loop 
                else
                    break
            
            q.add(null); 
        
        else
            while (temp != null)
            
                // If the required kth node 
                // has been found then return the answer 
                if (k == 0
                    return ans; 
  
                k--; 
  
                // Update the value of variable ans 
                // each time 
                ans = temp.data; 
  
                if (temp.left!=null
                    q.add(temp.left); 
  
                temp = temp.right; 
            
        
    
  
    // If kth node doesnt exists then 
    // return -1 
    return -1
  
// Driver Code 
public static void main(String args[])
    Node root = newNode(8); 
    root.left = newNode(3); 
    root.right = newNode(10); 
    root.left.left = newNode(1); 
    root.left.right = newNode(6); 
    root.right.right = newNode(14); 
    root.right.right.left = newNode(13); 
    root.left.right.left = newNode(4); 
    root.left.right.right = newNode(7); 
  
    int k = 9
  
    System.out.println( diagonalPrint(root, k)); 
}
  
// This code is contributed by Arnab Kundu

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print kth node 
// in the diagonal traversal of a binary tree 
using System;
using System.Collections.Generic;
  
class GFG 
      
// A binary tree node has data, pointer to left 
//child and a pointer to right child 
public class Node 
    public int data; 
    public Node left, right; 
}; 
  
// Helper function that allocates a new node 
static Node newNode(int data) 
    Node node = new Node(); 
    node.data = data; 
    node.left = node.right = null
    return (node); 
  
// Iterative function to print kth node 
// in diagonal traversal of binary tree 
static int diagonalPrint(Node root, int k) 
    // Base cases 
    if (root == null || k == 0) 
        return -1; 
  
    int ans = -1; 
    Queue<Node> q = new Queue<Node>(); 
  
    // Enqueue root node 
    q.Enqueue(root); 
  
    // Enqueue delimiter null 
    q.Enqueue(null); 
  
    while (q.Count > 0) 
    
        Node temp = q.Peek(); 
        q.Dequeue(); 
  
        if (temp == null
        
            if (q.Count == 0) 
            
                // If kth node exists then return 
                // the answer 
                if (k == 0) 
                    return ans; 
  
                // If kth node doesnt exists 
                // then break from the while loop 
                else
                    break
            
            q.Enqueue(null); 
        
        else 
        
            while (temp != null
            
                // If the required kth node 
                // has been found then return the answer 
                if (k == 0) 
                    return ans; 
  
                k--; 
  
                // Update the value of variable ans 
                // each time 
                ans = temp.data; 
  
                if (temp.left!=null
                    q.Enqueue(temp.left); 
  
                temp = temp.right; 
            
        
    
  
    // If kth node doesnt exists then 
    // return -1 
    return -1; 
  
// Driver Code 
public static void Main(String []args) 
    Node root = newNode(8); 
    root.left = newNode(3); 
    root.right = newNode(10); 
    root.left.left = newNode(1); 
    root.left.right = newNode(6); 
    root.right.right = newNode(14); 
    root.right.right.left = newNode(13); 
    root.left.right.left = newNode(4); 
    root.left.right.right = newNode(7); 
  
    int k = 9; 
  
    Console.WriteLine( diagonalPrint(root, k)); 
  
/* This code is contributed by PrinciRaj1992 */

chevron_right


Output:

4


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.