# Kth highest XOR of diagonal elements from a Matrix

• Last Updated : 19 Jul, 2021

Given a square matrix mat[][] of size N * N, the task is to calculate XOR value of every diagonal elements and find the Kth maximum XOR value obtained.
Note: There are 2 * N – 1 diagonals in the matrix. Starting point of ith diagonal is (min(N, i), (1 + max(i – N, 0))).

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, K = 3
Output: 6
Explanation:
XOR of 1st diagonal = 1.
XOR of 2nd diagonal = 4 ^ 2 = 6.
XOR of 3rd diagonal = 7 ^ 5 ^ 3 = 1.
XOR of 4th diagonal = 8 ^ 6 = 14.
XOR of 5th diagonal = 9.

Input: mat[][] = {{1, 2}, {4, 5}}, K = 2
Output: 6
Explanation:
XOR of 1st diagonal =1.
XOR of 2nd diagonal = 4 ^ 2 = 6.
XOR of 3rd diagonal = 5.

Approach: Follow the steps below to solve the problem

• Traverse the matrix diagonally.
• For every ith diagonal, starting point is (min(N, i), (1 + max(i – N, 0))).
• Store XOR of each diagonal in a vector.
• Sort the vector.
• Print the Kth maximum value obtained.

Below is the implementation of the above approach:

## C++

 `// C++ Program to implement``// the above approach` `#include ``using` `namespace` `std;` `// Function to find K-th maximum XOR``// of any diagonal in the matrix``void` `findXOR(vector > mat, ``int` `K)``{``    ``// Number or rows``    ``int` `N = mat.size();` `    ``// Number of columns``    ``int` `M = mat.size();` `    ``// Store XOR of diagonals``    ``vector<``int``> digXOR;` `    ``// Traverse each diagonal``    ``for` `(``int` `l = 1; l <= (N + M - 1); l++) {` `        ``// Starting column of diagonal``        ``int` `s_col = max(0, l - N);` `        ``// Count total elements in the diagonal``        ``int` `count = min({ l, (M - s_col), N });` `        ``// Store XOR of current diagonal``        ``int` `currXOR = 0;` `        ``for` `(``int` `j = 0; j < count; j++) {``            ``currXOR``                ``= (currXOR``                   ``^ mat[min(N, l) - j - 1][s_col + j]);``        ``}` `        ``// Push XOR of current diagonal``        ``digXOR.push_back(currXOR);``    ``}` `    ``// Sort XOR values of diagonals``    ``sort(digXOR.begin(), digXOR.end());` `    ``// Print the K-th Maximum XOR``    ``cout << digXOR[N + M - 1 - K];``}` `// Driver Code``int` `main()``{``    ``vector > mat``        ``= { { 1, 2, 3 },``            ``{ 4, 5, 6 },``            ``{ 7, 8, 9 } };` `    ``int` `K = 3;` `    ``findXOR(mat, K);``    ``return` `0;``}`

## Java

 `// Java Program to implement``// the above approach``import` `java.util.*;``class` `GFG``{` `// Function to find K-th maximum XOR``// of any diagonal in the matrix``static` `void` `findXOR(``int``[][] mat, ``int` `K)``{``  ` `    ``// Number or rows``    ``int` `N = mat.length;` `    ``// Number of columns``    ``int` `M = mat[``0``].length;` `    ``// Store XOR of diagonals``    ``ArrayList digXOR``            ``= ``new` `ArrayList();` `    ``// Traverse each diagonal``    ``for` `(``int` `l = ``1``; l <= (N + M - ``1``); l++) {` `        ``// Starting column of diagonal``        ``int` `s_col = Math.max(``0``, l - N);` `        ``// Count total elements in the diagonal``        ``int` `count = Math.min( l, Math.min((M - s_col), N));` `        ``// Store XOR of current diagonal``        ``int` `currXOR = ``0``;` `        ``for` `(``int` `j = ``0``; j < count; j++) {``            ``currXOR``                ``= (currXOR``                   ``^ mat[Math.min(N, l) - j - ``1``][s_col + j]);``        ``}` `        ``// Push XOR of current diagonal``        ``digXOR.add(currXOR);``    ``}` `    ``// Sort XOR values of diagonals``    ``Collections.sort(digXOR);` `    ``// Print the K-th Maximum XOR``    ``System.out.print(digXOR.get(N + M - ``1` `- K));``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int``[][] mat``        ``= { { ``1``, ``2``, ``3` `},``            ``{ ``4``, ``5``, ``6` `},``            ``{ ``7``, ``8``, ``9` `} };` `    ``int` `K = ``3``;` `    ``findXOR(mat, K);``}``}` `// This code is contributed by code_hunt.`

## Python3

 `# Python3 Program to implement``# the above approach` `# Function to find K-th maximum XOR``# of any diagonal in the matrix``def` `findXOR(mat, K):``  ` `    ``# Number or rows``    ``N ``=` `len``(mat)` `    ``# Number of columns``    ``M ``=` `len``(mat[``0``])` `    ``# Store XOR of diagonals``    ``digXOR ``=` `[]` `    ``# Traverse each diagonal``    ``for` `l ``in` `range``(``1``, N ``+` `M, ``1``):``      ` `        ``# Starting column of diagonal``        ``s_col ``=` `max``(``0``, l ``-` `N)` `        ``# Count total elements in the diagonal``        ``count ``=` `min``([l, (M ``-` `s_col), N])` `        ``# Store XOR of current diagonal``        ``currXOR ``=` `0``        ``for` `j ``in` `range``(count):``            ``currXOR ``=` `(currXOR ^ mat[``min``(N, l) ``-` `j ``-` `1``][s_col ``+` `j])` `        ``# Push XOR of current diagonal``        ``digXOR.append(currXOR)` `    ``# Sort XOR values of diagonals``    ``digXOR.sort(reverse``=``False``)` `    ``# Print the K-th Maximum XOR``    ``print``(digXOR[N ``+` `M ``-` `1` `-` `K])` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``mat ``=` `[[``1``, ``2``, ``3``],``           ``[``4``, ``5``, ``6``],``           ``[``7``, ``8``, ``9``]]``    ``K ``=` `3``    ``findXOR(mat, K)` `    ``# This code is contributed by SURENDRA_GANGWAR.`

## C#

 `// C# program to implement``// the above approach``using` `System;``using` `System.Collections.Generic;` `class` `GFG{` `// Function to find K-th maximum XOR``// of any diagonal in the matrix``static` `void` `findXOR(``int``[,]mat, ``int` `K)``{``    ` `    ``// Number or rows``    ``int` `N = mat.GetLength(0);` `    ``// Number of columns``    ``int` `M = mat.GetLength(1);` `    ``// Store XOR of diagonals``    ``List<``int``> digXOR = ``new` `List<``int``>();` `    ``// Traverse each diagonal``    ``for``(``int` `l = 1; l <= (N + M - 1); l++)``    ``{``        ` `        ``// Starting column of diagonal``        ``int` `s_col = Math.Max(0, l - N);` `        ``// Count total elements in the diagonal``        ``int` `count = Math.Min(l, Math.Min((M - s_col), N));` `        ``// Store XOR of current diagonal``        ``int` `currXOR = 0;` `        ``for``(``int` `j = 0; j < count; j++)``        ``{``            ``currXOR = (currXOR ^ mat[Math.Min(N, l) - j - 1,``                                              ``s_col + j]);``        ``}` `        ``// Push XOR of current diagonal``        ``digXOR.Add(currXOR);``    ``}` `    ``// Sort XOR values of diagonals``    ``digXOR.Sort();` `    ``// Print the K-th Maximum XOR``    ``Console.Write(digXOR[N + M - 1 - K]);``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``int``[,] mat = { { 1, 2, 3 },``                   ``{ 4, 5, 6 },``                   ``{ 7, 8, 9 } };` `    ``int` `K = 3;` `    ``findXOR(mat, K);``}``}` `// This code is contributed by shikhasingrajput`

## Javascript

 ``
Output:
`6`

Time Complexity: O(N * M)
Space Complexity: O(N * M)

My Personal Notes arrow_drop_up