Given a positive number k and an undirected graph of N nodes, numbered from 0 to N-1, each having a weight associated with it. Note that this is different from a normal weighted graph where every edge has a weight.
For each node, if we sort the nodes (according to their weights), which are directly connected to it, in decreasing order, then what will be the number of the node at the kth position. Print kth node number(not weight) for each node and if it does not exist, print -1.
Examples:
Input : N = 3, k = 2, wt[] = { 2, 4, 3 }.
edge 1: 0 2
edge 2: 0 1
edge 3: 1 2
Output : 2 0 0
Graph:
0 (weight 2)
/ \
/ \
1-----2
(weight 4) (weight 3)
For node 0, sorted (decreasing order) nodes
according to their weights are node 1(weight 4),
node 2(weight 3). The node at 2nd position for
node 0 is node 2.
For node 1, sorted (decreasing order) nodes
according to their weight are node 2(weight 3),
node 0(weight 2). The node at 2nd position for
node 1 is node 0.
For node 2, sorted (decreasing order) nodes
according to their weight are node 1(weight 4),
node 0(weight 2). The node at 2nd position for
node 2 is node 0.
The idea is to sort Adjacency List of each node on the basis of adjacent node weights.
First, create Adjacency List for all the nodes. Now for each node, all the nodes which are directly connected to it stored in a list. In adjacency list, store the nodes along with their weights.
Now, for each node sort the weights of all nodes which are directly connected to it in reverse order, and then print the node number which is at kth position in the list of each node.
Below is implementation of this approach:
C++
#include<bits/stdc++.h>
using namespace std;
void printkthnode(vector< pair< int , int > > adj[],
int wt[], int n, int k)
{
for ( int i = 0; i < n; i++)
sort(adj[i].begin(), adj[i].end());
for ( int i = 0; i < n; i++)
{
if (adj[i].size() >= k)
cout << adj[i][adj[i].size() - k].second;
else
cout << "-1" ;
}
}
int main()
{
int n = 3, k = 2;
int wt[] = { 2, 4, 3 };
vector< pair< int , int > > adj[n+1];
adj[0].push_back(make_pair(wt[2], 2));
adj[2].push_back(make_pair(wt[0], 0));
adj[0].push_back(make_pair(wt[1], 1));
adj[1].push_back(make_pair(wt[0], 0));
adj[1].push_back(make_pair(wt[2], 2));
adj[2].push_back(make_pair(wt[1], 1));
printkthnode(adj, wt, n, k);
return 0;
}
|
Java
import java.util.*;
public class GFG
{
static class pair
{
int first, second;
pair( int a, int b)
{
first = a;
second = b;
}
}
static void printkthnode(Vector<pair> adj[], int wt[], int n, int k)
{
for ( int i = 0 ; i < n; i++)
Collections.sort(adj[i], new Comparator<pair>()
{
public int compare(pair p1, pair p2)
{
return p1.first - p2.first;
}
});
for ( int i = 0 ; i < n; i++)
{
if (adj[i].size() >= k)
System.out.print(adj[i].get(adj[i].size() -
k).second + " " );
else
System.out.print( "-1" );
}
}
public static void main(String[] args)
{
int n = 3 , k = 2 ;
int wt[] = { 2 , 4 , 3 };
Vector<pair>[] adj = new Vector[n + 1 ];
for ( int i = 0 ; i < n + 1 ; i++)
adj[i] = new Vector<pair>();
adj[ 0 ].add( new pair(wt[ 2 ], 2 ));
adj[ 2 ].add( new pair(wt[ 0 ], 0 ));
adj[ 0 ].add( new pair(wt[ 1 ], 1 ));
adj[ 1 ].add( new pair(wt[ 0 ], 0 ));
adj[ 1 ].add( new pair(wt[ 2 ], 2 ));
adj[ 2 ].add( new pair(wt[ 1 ], 1 ));
printkthnode(adj, wt, n, k);
}
}
|
Python3
def printkthnode(adj, wt, n, k):
for i in range (n):
adj[i].sort()
for i in range (n):
if ( len (adj[i]) > = k):
print (adj[i][ len (adj[i]) -
k][ 1 ], end = " " )
else :
print ( "-1" , end = " " )
if __name__ = = '__main__' :
n = 3
k = 2
wt = [ 2 , 4 , 3 ]
adj = [[] for i in range (n + 1 )]
adj[ 0 ].append([wt[ 2 ], 2 ])
adj[ 2 ].append([wt[ 0 ], 0 ])
adj[ 0 ].append([wt[ 1 ], 1 ])
adj[ 1 ].append([wt[ 0 ], 0 ])
adj[ 1 ].append([wt[ 2 ], 2 ])
adj[ 2 ].append([wt[ 1 ], 1 ])
printkthnode(adj, wt, n, k)
|
C#
using System;
using System.Collections.Generic;
class GFG
{
public class pair
{
public int first, second;
public pair( int a, int b)
{
first = a;
second = b;
}
}
static void PrintKthNode(List<pair>[] adj, int [] wt, int n, int k)
{
for ( int i = 0; i < n; i++)
{
adj[i].Sort((pair p1, pair p2) =>
{
return p1.first - p2.first;
});
}
for ( int i = 0; i < n; i++)
{
if (adj[i].Count >= k)
Console.Write(adj[i][adj[i].Count - k].second + " " );
else
Console.Write( "-1" );
}
}
static void Main( string [] args)
{
int n = 3, k = 2;
int [] wt = { 2, 4, 3 };
List<pair>[] adj = new List<pair>[n + 1];
for ( int i = 0; i < n + 1; i++)
adj[i] = new List<pair>();
adj[0].Add( new pair(wt[2], 2));
adj[2].Add( new pair(wt[0], 0));
adj[0].Add( new pair(wt[1], 1));
adj[1].Add( new pair(wt[0], 0));
adj[1].Add( new pair(wt[2], 2));
adj[2].Add( new pair(wt[1], 1));
PrintKthNode(adj, wt, n, k);
}
}
|
Javascript
function printkthnode(adj, wt, n, k) {
for (let i = 0; i < n; i++) {
adj[i].sort();
}
for (let i = 0; i < n; i++) {
if (adj[i].length >= k) {
console.log(adj[i][adj[i].length - k][1] + " " );
}
else {
console.log( "-1 " );
}
}
}
function main() {
let n = 3;
let k = 2;
let wt = [2, 4, 3];
let adj = new Array(n + 1);
for (let i = 0; i <= n; i++) {
adj[i] = [];
}
adj[0].push([wt[2], 2]);
adj[2].push([wt[0], 0]);
adj[0].push([wt[1], 1]);
adj[1].push([wt[0], 0]);
adj[1].push([wt[2], 2]);
adj[2].push([wt[1], 1]);
printkthnode(adj, wt, n, k);
}
main();
|
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 Sep, 2023
Like Article
Save Article