Kruskal’s Algorithm (Simple Implementation for Adjacency Matrix)
Below are the steps for finding MST using Kruskal’s algorithm
- Sort all the edges in non-decreasing order of their weight.
- Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- Repeat step#2 until there are (V-1) edges in the spanning tree.
We have discussed one implementation of Kruskal’s algorithm in previous post. In this post, a simpler implementation for adjacency matrix is discussed.
Implementation:
C++
// Simple C++ implementation for Kruskal's // algorithm #include <bits/stdc++.h> using namespace std; #define V 5 int parent[V]; // Find set of vertex i int find( int i) { while (parent[i] != i) i = parent[i]; return i; } // Does union of i and j. It returns // false if i and j are already in same // set. void union1( int i, int j) { int a = find(i); int b = find(j); parent[a] = b; } // Finds MST using Kruskal's algorithm void kruskalMST( int cost[][V]) { int mincost = 0; // Cost of min MST. // Initialize sets of disjoint sets. for ( int i = 0; i < V; i++) parent[i] = i; // Include minimum weight edges one by one int edge_count = 0; while (edge_count < V - 1) { int min = INT_MAX, a = -1, b = -1; for ( int i = 0; i < V; i++) { for ( int j = 0; j < V; j++) { if (find(i) != find(j) && cost[i][j] < min) { min = cost[i][j]; a = i; b = j; } } } union1(a, b); printf ( "Edge %d:(%d, %d) cost:%d \n" , edge_count++, a, b, min); mincost += min; } printf ( "\n Minimum cost= %d \n" , mincost); } // driver program to test above function int main() { /* Let us create the following graph 2 3 (0)--(1)--(2) | / \ | 6| 8/ \5 |7 | / \ | (3)-------(4) 9 */ int cost[][V] = { { INT_MAX, 2, INT_MAX, 6, INT_MAX }, { 2, INT_MAX, 3, 8, 5 }, { INT_MAX, 3, INT_MAX, INT_MAX, 7 }, { 6, 8, INT_MAX, INT_MAX, 9 }, { INT_MAX, 5, 7, 9, INT_MAX }, }; // Print the solution kruskalMST(cost); return 0; } |
Java
// Simple Java implementation for Kruskal's // algorithm import java.util.*; class GFG { static int V = 5 ; static int [] parent = new int [V]; static int INF = Integer.MAX_VALUE; // Find set of vertex i static int find( int i) { while (parent[i] != i) i = parent[i]; return i; } // Does union of i and j. It returns // false if i and j are already in same // set. static void union1( int i, int j) { int a = find(i); int b = find(j); parent[a] = b; } // Finds MST using Kruskal's algorithm static void kruskalMST( int cost[][]) { int mincost = 0 ; // Cost of min MST. // Initialize sets of disjoint sets. for ( int i = 0 ; i < V; i++) parent[i] = i; // Include minimum weight edges one by one int edge_count = 0 ; while (edge_count < V - 1 ) { int min = INF, a = - 1 , b = - 1 ; for ( int i = 0 ; i < V; i++) { for ( int j = 0 ; j < V; j++) { if (find(i) != find(j) && cost[i][j] < min) { min = cost[i][j]; a = i; b = j; } } } union1(a, b); System.out.printf( "Edge %d:(%d, %d) cost:%d \n" , edge_count++, a, b, min); mincost += min; } System.out.printf( "\n Minimum cost= %d \n" , mincost); } // Driver code public static void main(String[] args) { /* Let us create the following graph 2 3 (0)--(1)--(2) | / \ | 6| 8/ \5 |7 | / \ | (3)-------(4) 9 */ int cost[][] = { { INF, 2 , INF, 6 , INF }, { 2 , INF, 3 , 8 , 5 }, { INF, 3 , INF, INF, 7 }, { 6 , 8 , INF, INF, 9 }, { INF, 5 , 7 , 9 , INF }, }; // Print the solution kruskalMST(cost); } } // This code contributed by Rajput-Ji |
Python3
# Python implementation for Kruskal's # algorithm # Find set of vertex i def find(i): while parent[i] ! = i: i = parent[i] return i # Does union of i and j. It returns # false if i and j are already in same # set. def union(i, j): a = find(i) b = find(j) parent[a] = b # Finds MST using Kruskal's algorithm def kruskalMST(cost): mincost = 0 # Cost of min MST # Initialize sets of disjoint sets for i in range (V): parent[i] = i # Include minimum weight edges one by one edge_count = 0 while edge_count < V - 1 : min = INF a = - 1 b = - 1 for i in range (V): for j in range (V): if find(i) ! = find(j) and cost[i][j] < min : min = cost[i][j] a = i b = j union(a, b) print ( 'Edge {}:({}, {}) cost:{}' . format (edge_count, a, b, min )) edge_count + = 1 mincost + = min print ( "Minimum cost= {}" . format (mincost)) # Driver code # Let us create the following graph # 2 3 # (0)--(1)--(2) # | / \ | # 6| 8/ \5 |7 # | / \ | # (3)-------(4) # 9 V = 5 parent = [i for i in range (V)] INF = float ( 'inf' ) cost = [[INF, 2 , INF, 6 , INF], [ 2 , INF, 3 , 8 , 5 ], [INF, 3 , INF, INF, 7 ], [ 6 , 8 , INF, INF, 9 ], [INF, 5 , 7 , 9 , INF]] # Print the solution kruskalMST(cost) # This code is contributed by ng24_7 |
C#
// Simple C# implementation for Kruskal's // algorithm using System; class GFG { static int V = 5; static int [] parent = new int [V]; static int INF = int .MaxValue; // Find set of vertex i static int find( int i) { while (parent[i] != i) i = parent[i]; return i; } // Does union of i and j. It returns // false if i and j are already in same // set. static void union1( int i, int j) { int a = find(i); int b = find(j); parent[a] = b; } // Finds MST using Kruskal's algorithm static void kruskalMST( int [,]cost) { int mincost = 0; // Cost of min MST. // Initialize sets of disjoint sets. for ( int i = 0; i < V; i++) parent[i] = i; // Include minimum weight edges one by one int edge_count = 0; while (edge_count < V - 1) { int min = INF, a = -1, b = -1; for ( int i = 0; i < V; i++) { for ( int j = 0; j < V; j++) { if (find(i) != find(j) && cost[i, j] < min) { min = cost[i, j]; a = i; b = j; } } } union1(a, b); Console.Write( "Edge {0}:({1}, {2}) cost:{3} \n" , edge_count++, a, b, min); mincost += min; } Console.Write( "\n Minimum cost= {0} \n" , mincost); } // Driver code public static void Main(String[] args) { /* Let us create the following graph 2 3 (0)--(1)--(2) | / \ | 6| 8/ \5 |7 | / \ | (3)-------(4) 9 */ int [,]cost = { { INF, 2, INF, 6, INF }, { 2, INF, 3, 8, 5 }, { INF, 3, INF, INF, 7 }, { 6, 8, INF, INF, 9 }, { INF, 5, 7, 9, INF }, }; // Print the solution kruskalMST(cost); } } /* This code contributed by PrinciRaj1992 */ |
Javascript
<script> // Simple Javascript implementation for Kruskal's // algorithm var V = 5; var parent = Array(V).fill(0); var INF = 1000000000; // Find set of vertex i function find(i) { while (parent[i] != i) i = parent[i]; return i; } // Does union of i and j. It returns // false if i and j are already in same // set. function union1(i, j) { var a = find(i); var b = find(j); parent[a] = b; } // Finds MST using Kruskal's algorithm function kruskalMST(cost) { var mincost = 0; // Cost of min MST. // Initialize sets of disjoint sets. for ( var i = 0; i < V; i++) parent[i] = i; // Include minimum weight edges one by one var edge_count = 0; while (edge_count < V - 1) { var min = INF, a = -1, b = -1; for ( var i = 0; i < V; i++) { for ( var j = 0; j < V; j++) { if (find(i) != find(j) && cost[i][j] < min) { min = cost[i][j]; a = i; b = j; } } } union1(a, b); document.write(`Edge ${edge_count++}:(${a}, ${b}) cost:${min} <br>`); mincost += min; } document.write(`<br> Minimum cost= ${mincost} <br>`); } // Driver code /* Let us create the following graph 2 3 (0)--(1)--(2) | / \ | 6| 8/ \5 |7 | / \ | (3)-------(4) 9 */ var cost = [ [INF, 2, INF, 6, INF], [2, INF, 3, 8, 5], [INF, 3, INF, INF, 7], [6, 8, INF, INF, 9], [INF, 5, 7, 9, INF]]; // Print the solution kruskalMST(cost); </script> |
Edge 0:(0, 1) cost:2 Edge 1:(1, 2) cost:3 Edge 2:(1, 4) cost:5 Edge 3:(0, 3) cost:6 Minimum cost= 16
Time Complexity:
The time complexity of Kruskal’s algorithm using the Union-Find algorithm for finding the cycle and sorting the edges is O(E log E + E log V), where E is the number of edges and V is the number of vertices in the graph.
Space Complexity:
The space complexity of the program is O(V), where V is the number of vertices in the graph.
Note that the above solution is not efficient. The idea is to provide a simple implementation for adjacency matrix representations. Please see below for efficient implementations.
Kruskal’s Minimum Spanning Tree Algorithm | Greedy Algo-2
Kruskal’s Minimum Spanning Tree using STL in C++
Please Login to comment...