Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Kronecker Product of two matrices

  • Difficulty Level : Easy
  • Last Updated : 03 May, 2021

Given a {m}\times{n} matrix A and a {p}\times{q} matrix B, their Kronecker product C = A tensor B, also called their matrix direct product, is an {(mp)}\times{(nq)} matrix. 

A tensor B =  |a11B   a12B|
              |a21B   a22B|

= |a11b11   a11b12   a12b11  a12b12|
  |a11b21   a11b22   a12b21  a12b22| 
  |a11b31   a11b32   a12b31  a12b32|
  |a21b11   a21b12   a22b11  a22b12|
  |a21b21   a21b22   a22b21  a22b22|
  |a21b31   a21b32   a22b31  a22b32|

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

1. The matrix direct(kronecker) product of the 2×2 matrix A 
   and the 2×2 matrix B is given by the 4×4 matrix :

Input : A = 1 2    B = 0 5
            3 4        6 7

Output : C = 0  5  0  10
             6  7  12 14
             0  15 0  20
             18 21 24 28

2. The matrix direct(kronecker) product of the 2×3 matrix A 
   and the 3×2 matrix B is given by the 6×6 matrix :

Input : A = 1 2    B = 0 5 2
            3 4        6 7 3
            1 0

Output : C = 0      5    2    0     10    4    
             6      7    3   12     14    6    
             0     15    6    0     20    8    
            18     21    9   24     28   12    
             0      5    2    0      0    0    
             6      7    3    0      0    0    

 



Below is the code to find the Kronecker Product of two matrices and stores it as matrix C : 
 

C++




// C++ code to find the Kronecker Product of two
// matrices and stores it as matrix C
#include <iostream>
using namespace std;
 
// rowa and cola are no of rows and columns
// of matrix A
// rowb and colb are no of rows and columns
// of matrix B
const int cola = 2, rowa = 3, colb = 3, rowb = 2;
 
// Function to computes the Kronecker Product
// of two matrices
void Kroneckerproduct(int A[][cola], int B[][colb])
{
 
    int C[rowa * rowb][cola * colb];
 
    // i loops till rowa
    for (int i = 0; i < rowa; i++) {
 
        // k loops till rowb
        for (int k = 0; k < rowb; k++) {
 
            // j loops till cola
            for (int j = 0; j < cola; j++) {
 
                // l loops till colb
                for (int l = 0; l < colb; l++) {
 
                    // Each element of matrix A is
                    // multiplied by whole Matrix B
                    // resp and stored as Matrix C
                    C[i + l + 1][j + k + 1] = A[i][j] * B[k][l];
                    cout << C[i + l + 1][j + k + 1] << " ";
                }
            }
            cout << endl;
        }
    }
}
 
// Driver Code
int main()
{
    int A[3][2] = { { 1, 2 }, { 3, 4 }, { 1, 0 } },
        B[2][3] = { { 0, 5, 2 }, { 6, 7, 3 } };
 
    Kroneckerproduct(A, B);
    return 0;
}
 
//This code is contributed by shubhamsingh10

C




// C code to find the Kronecker Product of two
// matrices and stores it as matrix C
#include <stdio.h>
 
// rowa and cola are no of rows and columns
// of matrix A
// rowb and colb are no of rows and columns
// of matrix B
const int cola = 2, rowa = 3, colb = 3, rowb = 2;
 
// Function to computes the Kronecker Product
// of two matrices
void Kroneckerproduct(int A[][cola], int B[][colb])
{
 
    int C[rowa * rowb][cola * colb];
 
    // i loops till rowa
    for (int i = 0; i < rowa; i++) {
 
        // k loops till rowb
        for (int k = 0; k < rowb; k++) {
 
            // j loops till cola
            for (int j = 0; j < cola; j++) {
 
                // l loops till colb
                for (int l = 0; l < colb; l++) {
 
                    // Each element of matrix A is
                    // multiplied by whole Matrix B
                    // resp and stored as Matrix C
                    C[i + l + 1][j + k + 1] = A[i][j] * B[k][l];
                    printf("%d\t", C[i + l + 1][j + k + 1]);
                }
            }
            printf("\n");
        }
    }
}
 
// Driver Code
int main()
{
    int A[3][2] = { { 1, 2 }, { 3, 4 }, { 1, 0 } },
        B[2][3] = { { 0, 5, 2 }, { 6, 7, 3 } };
 
    Kroneckerproduct(A, B);
    return 0;
}

Java




// Java code to find the Kronecker Product of
// two matrices and stores it as matrix C
import java.io.*;
import java.util.*;
 
class GFG {
         
    // rowa and cola are no of rows and columns
    // of matrix A
    // rowb and colb are no of rows and columns
    // of matrix B
    static int cola = 2, rowa = 3, colb = 3, rowb = 2;
     
    // Function to computes the Kronecker Product
    // of two matrices
    static void Kroneckerproduct(int A[][], int B[][])
    {
     
        int[][] C= new int[rowa * rowb][cola * colb];
     
        // i loops till rowa
        for (int i = 0; i < rowa; i++)
        {
     
            // k loops till rowb
            for (int k = 0; k < rowb; k++)
            {
     
                // j loops till cola
                for (int j = 0; j < cola; j++)
                {
     
                    // l loops till colb
                    for (int l = 0; l < colb; l++)
                    {
     
                        // Each element of matrix A is
                        // multiplied by whole Matrix B
                        // resp and stored as Matrix C
                        C[i + l + 1][j + k + 1] = A[i][j] * B[k][l];
                        System.out.print( C[i + l + 1][j + k + 1]+" ");
                    }
                }
                System.out.println();
            }
        }
    }
     
    // Driver program
    public static void main (String[] args)
    {
        int A[][] = { { 1, 2 },
                      { 3, 4 },
                      { 1, 0 } };
                       
        int B[][] = { { 0, 5, 2 },
                      { 6, 7, 3 } };
     
        Kroneckerproduct(A, B);
    }
}
 
// This code is contributed by Gitanjali.

Python3




# Python3 code to find the Kronecker Product of two
# matrices and stores it as matrix C
  
# rowa and cola are no of rows and columns
# of matrix A
# rowb and colb are no of rows and columns
# of matrix B
cola = 2
rowa = 3
colb = 3
rowb = 2
  
# Function to computes the Kronecker Product
# of two matrices
 
def Kroneckerproduct( A , B ):
     
    C = [[0 for j in range(cola * colb)] for i in range(rowa * rowb)]
  
    # i loops till rowa
    for i in range(0, rowa):
         
        # k loops till rowb
        for k in range(0, rowb):
  
            # j loops till cola
            for j in range(0, cola):
  
                # l loops till colb
                for l in range(0, colb):
  
                    # Each element of matrix A is
                    # multiplied by whole Matrix B
                    # resp and stored as Matrix C
                    C[i + l + 1][j + k + 1] = A[i][j] * B[k][l]
                    print (C[i + l + 1][j + k + 1],end=' ')
             
             
            print ("\n")
         
 
# Driver code.
 
A = [[0 for j in range(2)] for i in range(3)]
B = [[0 for j in range(3)] for i in range(2)]
 
A[0][0] = 1
A[0][1] = 2
A[1][0] = 3
A[1][1] = 4
A[2][0] = 1
A[2][1] = 0
 
B[0][0] = 0
B[0][1] = 5
B[0][2] = 2
B[1][0] = 6
B[1][1] = 7
B[1][2] = 3
 
Kroneckerproduct( A , B )
 
# This code is contributed by Saloni.

C#




// C# code to find the Kronecker Product of
// two matrices and stores it as matrix C
using System;
 
class GFG {
         
    // rowa and cola are no of rows
    // and columns of matrix A
    // rowb and colb are no of rows
    //  and columns of matrix B
    static int cola = 2, rowa = 3;
    static int colb = 3, rowb = 2;
     
    // Function to computes the Kronecker
    // Product of two matrices
    static void Kroneckerproduct(int [,]A, int [,]B)
    {
     
        int [,]C= new int[rowa * rowb,
                          cola * colb];
     
        // i loops till rowa
        for (int i = 0; i < rowa; i++)
        {
     
            // k loops till rowb
            for (int k = 0; k < rowb; k++)
            {
     
                // j loops till cola
                for (int j = 0; j < cola; j++)
                {
     
                    // l loops till colb
                    for (int l = 0; l < colb; l++)
                    {
     
                        // Each element of matrix A is
                        // multiplied by whole Matrix B
                        // resp and stored as Matrix C
                        C[i + l + 1, j + k + 1] = A[i, j] *
                                                  B[k, l];
                        Console.Write( C[i + l + 1,
                                       j + k + 1] + " ");
                    }
                }
                Console.WriteLine();
            }
        }
    }
     
    // Driver Code
    public static void Main ()
    {
        int [,]A = {{1, 2},
                   {3, 4},
                   {1, 0}};
                         
        int [,]B = {{0, 5, 2},
                   {6, 7, 3}};
     
        Kroneckerproduct(A, B);
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// PHP code to find the
// Kronecker Product of two
 
// rowa and cola are no of
// rows and columns of matrix A
// rowb and colb are no of
// rows and columns of matrix B
$cola = 2;
$rowa = 3;
$colb = 3;
$rowb = 2;
 
// Function to computes the
// Kronecker Product of two matrices
function Kroneckerproduct($A, $B)
{
    global $cola;
    global $rowa;
    global $colb;
    global $rowb;
 
 
    //$C[$rowa * $rowb][$cola * $colb];
    $C;
 
    // i loops till rowa
    for ( $i = 0; $i < $rowa; $i++)
    {
 
        // k loops till rowb
        for ($k = 0; $k < $rowb; $k++)
        {
 
            // j loops till cola
            for ( $j = 0; $j < $cola; $j++) 
            {
 
                // l loops till colb
                for ($l = 0; $l < $colb; $l++)
                {
 
                    // Each element of matrix A is
                    // multiplied by whole Matrix B
                    // resp and stored as Matrix C
                    $C[$i + $l + 1][$j + $k + 1] = $A[$i][$j] *
                                                   $B[$k][$l];
                    echo ($C[$i + $l + 1][$j + $k + 1]), "\t" ;
                }
            }
        echo "\n";
        }
    }
}
 
// Driver Code
$A = array (array (1, 2),
            array (3, 4),
            array (1, 0));
$B = array (array (0, 5, 2),
            array (6, 7, 3));
 
Kroneckerproduct($A, $B);
 
// This code is contributed by ajit
?>

Javascript




<script>
    // Javascript code to find the Kronecker Product of
    // two matrices and stores it as matrix C
     
    // rowa and cola are no of rows and columns
    // of matrix A
    // rowb and colb are no of rows and columns
    // of matrix B
    let cola = 2, rowa = 3, colb = 3, rowb = 2;
       
    // Function to computes the Kronecker Product
    // of two matrices
    function Kroneckerproduct(A, B)
    {
       
        let C= new Array(rowa * rowb)
        for(let i = 0; i < (rowa * rowb); i++)
        {
            C[i] = new Array(cola * colb);
            for(let j = 0; j < (cola * colb); j++)
            {
                C[i][j] = 0;
            }
        }
       
        // i loops till rowa
        for (let i = 0; i < rowa; i++)
        {
       
            // k loops till rowb
            for (let k = 0; k < rowb; k++)
            {
       
                // j loops till cola
                for (let j = 0; j < cola; j++)
                {
       
                    // l loops till colb
                    for (let l = 0; l < colb; l++)
                    {
       
                        // Each element of matrix A is
                        // multiplied by whole Matrix B
                        // resp and stored as Matrix C
                        C[i + l + 1][j + k + 1] = A[i][j] * B[k][l];
                        document.write( C[i + l + 1][j + k + 1]+" ");
                    }
                }
                document.write("</br>");
            }
        }
    }
     
    let A = [ [ 1, 2 ],
             [ 3, 4 ],
             [ 1, 0 ] ];
                         
    let B = [ [ 0, 5, 2 ],
                  [ 6, 7, 3 ] ];
 
    Kroneckerproduct(A, B);
     
</script>

Output : 
 

0    5    2    0    10    4    
6    7    3    12   14    6    
0    15   6    0    20    8    
18   21   9    24   28    12    
0    5    2    0    0     0    
6    7    3    0    0     0

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :