K-th smallest positive integer having sum with given number equal to bitwise OR with given number
Given two positive integers X and K, the task is to find the K-th smallest positive integer Y, such that X + Y = X | Y, where | denotes the bitwise OR operation.
Example:
Input: X = 5, K = 1
Output: 2
Explanation: The first number is 2 as (2 + 5 = 2 | 5 )Input: X = 5, K = 5
Output: 18
Explanation: The list of correct values is 2, 8, 10, 16, 18. The 5th number is this list is 18
Approach: Given problem can be solved following the below mentioned steps:
- Let the final value be Y. From the properties of bitwise operations, it is known that X + Y = X & Y + X | Y, where & is a bitwise AND of two numbers
- For the equation in the problem statement to be true, the value of X & Y must be 0
- So for all positions, if the ith bit is ON in X then it must be OFF for all possible solutions of Y
- For instance, if X = 1001101001 in binary (617 in decimal notation), then the last ten digits of y must be Y= 0**00*0**0, where ‘*’ denotes either zero or one. Also, we can pad any number of any digits to the beginning of the number, since all higher bits are zeroes
- So the final solution will be to treat all the positions where the bit can be 0 or 1 as a sequence from left to right and find the binary notation of K.
- Fill all positions according to the binary notation of K
Below is the implementation of the above approach:
C++
// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate K-th smallest // solution(Y) of equation X+Y = X|Y long long KthSolution( long long X, long long K) { // Initialize the variable // to store the answer long long ans = 0; for ( int i = 0; i < 64; i++) { // The i-th bit of X is off if (!(X & (1LL << i))) { // The i-bit of K is on if (K & 1) { ans |= (1LL << i); } // Divide K by 2 K >>= 1; // If K becomes 0 then break if (!K) { break ; } } } return ans; } // Driver Code int main() { long long X = 5, K = 5; cout << KthSolution(X, K); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to calculate K-th smallest // solution(Y) of equation X+Y = X|Y static long KthSolution( long X, long K) { // Initialize the variable // to store the answer long ans = 0 ; for ( int i = 0 ; i < 64 ; i++) { // The i-th bit of X is off if ((X & ( 1 << i)) == 0 ) { // The i-bit of K is on if ((K & 1 ) > 0 ) { ans |= ( 1 << i); } // Divide K by 2 K >>= 1 ; // If K becomes 0 then break if (K == 0 ) { break ; } } } return ans; } // Driver Code public static void main(String[] args) { long X = 5 , K = 5 ; System.out.println(KthSolution(X, K)); } } // This code is contributed by sanjoy_62. |
Python3
# python implementation for the above approach # Function to calculate K-th smallest # solution(Y) of equation X+Y = X|Y def KthSolution(X, K): # Initialize the variable # to store the answer ans = 0 for i in range ( 0 , 64 ): # The i-th bit of X is off if ( not (X & ( 1 << i))): # The i-bit of K is on if (K & 1 ): ans | = ( 1 << i) # Divide K by 2 K >> = 1 # If K becomes 0 then break if ( not K): break return ans # Driver Code if __name__ = = "__main__" : X = 5 K = 5 print (KthSolution(X, K)) # This code is contributed by rakeshsahni |
C#
// C# implementation for the above approach using System; class GFG { // Function to calculate K-th smallest // solution(Y) of equation X+Y = X|Y static long KthSolution( long X, long K) { // Initialize the variable // to store the answer long ans = 0; for ( int i = 0; i < 64; i++) { // The i-th bit of X is off if ((X & (1LL << i)) == 0) { // The i-bit of K is on if ((K & 1) > 0) { ans |= (1LL << i); } // Divide K by 2 K >>= 1; // If K becomes 0 then break if (K == 0) { break ; } } } return ans; } // Driver Code public static void Main() { long X = 5, K = 5; Console.Write(KthSolution(X, K)); } } // This code is contributed by ukasp. |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to calculate K-th smallest // solution(Y) of equation X+Y = X|Y function KthSolution(X, K) { // Initialize the variable // to store the answer let ans = 0; for (let i = 0; i < 64; i++) { // The i-th bit of X is off if (!(X & (1 << i))) { // The i-bit of K is on if (K & 1) { ans |= (1 << i); } // Divide K by 2 K >>= 1; // If K becomes 0 then break if (!K) { break ; } } } return ans; } // Driver Code let X = 5, K = 5; document.write(KthSolution(X, K)); // This code is contributed by Potta Lokesh </script> |
Output
18
Time Complexity: O(log(N))
Auxiliary Space: O(1)
Please Login to comment...