Open In App
Related Articles

K-th Smallest Element in an Unsorted Array using Priority Queue

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] consisting of N integers and an integer K, the task is to find the Kth smallest element in the array using Priority Queue.

Examples:

Input: arr[] = {5, 20, 10, 7, 1}, N = 5, K = 2
Output: 5
Explanation: In the given array, the 2nd smallest element is 5. Therefore, the required output is 5.

Input: arr[] = {5, 20, 10, 7, 1}, N = 5, K = 5
Output: 20
Explanation: In the given array, the 5th smallest element is 20. Therefore, the required output is 20.

Approach: The idea is to use PriorityQueue Collection in Java or priority_queue STL library to implement Max_Heap to find the Kth smallest array element. Follow the steps below to solve the problem:

  1. Implement Max Heap using a priority_queue.
  2. Push first K array elements into the priority_queue.
  3. From there on, after every insertion of an array element, pop the element at the top of the priority_queue.
  4. After complete traversal of the array, print the element at the top of the priority queue as the required answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find kth smallest array element
void kthSmallest(vector<int>& v, int N, int K)
{
    // Implement Max Heap using
    // a Priority Queue
    priority_queue<int> heap1;
 
    for (int i = 0; i < N; ++i) {
 
        // Insert elements into
        // the priority queue
        heap1.push(v[i]);
 
        // If size of the priority
        // queue exceeds k
        if (heap1.size() > K) {
            heap1.pop();
        }
    }
 
    // Print the k-th smallest element
    cout << heap1.top() << endl;
}
 
// Driver code
int main()
{
    // Given array
    vector<int> vec = { 5, 20, 10, 7, 1 };
 
    // Size of array
    int N = vec.size();
 
    // Given K
    int K = 2;
 
    // Function Call
    kthSmallest(vec, N, K % (N+1));
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class CustomComparator implements Comparator<Integer> {
 
    @Override
    public int compare(Integer number1, Integer number2) {
        int value =  number1.compareTo(number2);
       
        // elements are sorted in reverse order
        if (value > 0) {
            return -1;
        }
        else if (value < 0) {
            return 1;
        }
        else {
            return 0;
        }
    }
}
class GFG{
 
// Function to find kth smallest array element
static void kthSmallest(int []v, int N, int K)
{
    // Implement Max Heap using
    // a Priority Queue
    PriorityQueue<Integer> heap1 = new PriorityQueue<Integer>(new CustomComparator());
 
    for (int i = 0; i < N; ++i) {
 
        // Insert elements into
        // the priority queue
        heap1.add(v[i]);
 
        // If size of the priority
        // queue exceeds k
        if (heap1.size() > K) {
            heap1.remove();
        }
    }
 
    // Print the k-th smallest element
    System.out.print(heap1.peek() +"\n");
}
 
// Driver code
public static void main(String[] args)
{
    // Given array
    int []vec = { 5, 20, 10, 7, 1 };
 
    // Size of array
    int N = vec.length;
 
    // Given K
    int K = 2;
 
    // Function Call
    kthSmallest(vec, N, K % N);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the above approach
 
# Function to find kth smallest array element
def kthSmallest(v, N, K):
     
    # Implement Max Heap using
    # a Priority Queue
    heap1 = []
  
    for i in range(N):
         
        # Insert elements into
        # the priority queue
        heap1.append(v[i])
  
        # If size of the priority
        # queue exceeds k
        if (len(heap1) > K):
            heap1.sort()
            heap1.reverse()
            del heap1[0]
  
    # Print the k-th smallest element
    heap1.sort()
    heap1.reverse()
    print(heap1[0])
 
# Driver code
 
# Given array
vec = [ 5, 20, 10, 7, 1 ]
 
# Size of array
N = len(vec)
 
# Given K
K = 2
 
# Function Call
kthSmallest(vec, N, K % N)
 
# This code is contributed by divyeshrabadiya07


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
// Function to find kth smallest array element
static void kthSmallest(int []v, int N, int K)
{
   
    // Implement Max Heap using
    // a Priority Queue
    List<int> heap1 = new List<int>();
    for (int i = 0; i < N; ++i) {
 
        // Insert elements into
        // the priority queue
        heap1.Add(v[i]);
 
        // If size of the priority
        // queue exceeds k
        if (heap1.Count > K) {
            heap1.Sort();
            heap1.Reverse();
            heap1.RemoveAt(0);
        }
    }
    heap1.Sort();
            heap1.Reverse();
 
    // Print the k-th smallest element
    Console.WriteLine(heap1[0]);
}
 
// Driver code
public static void Main(String[] args)
{
   
    // Given array
    int []vec = { 5, 20, 10, 7, 1 };
 
    // Size of array
    int N = vec.Length;
 
    // Given K
    int K = 2;
 
    // Function Call
    kthSmallest(vec, N, K % N);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// Javascript program for the above approach
 
// Function to find kth smallest array element
function kthSmallest(v,N,K)
{
    let heap1 = [];
     for (let i = 0; i < N; ++i) {
  
        // Insert elements into
        // the priority queue
        heap1.push(v[i]);
          
        // If size of the priority
        // queue exceeds k
        if (heap1.length > K)
        {
            heap1.sort(function(a,b){
                return a-b;
            });
            heap1.reverse();
            heap1.shift();
        }
    }
    heap1.sort(function(a,b){
                return a-b;
            });
            heap1.reverse();
    // Print the k-th smallest element
    document.write(heap1[0] +"<br>");
}
 
// Driver code
// Given array
let vec=[5, 20, 10, 7, 1 ];
// Size of array
let N = vec.length;
 
// Given K
let K = 2;
 
// Function Call
kthSmallest(vec, N, K % N);
 
// This code is contributed by patel2127
</script>


Output: 

5

 

Time Complexity: O(N LogK)
Auxiliary Space: O(K), since the priority queue at any time holds at max k elements.


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 16 Mar, 2023
Like Article
Save Article
Similar Reads
Related Tutorials