k-th number in the Odd-Even sequence

Given two numbers n and k, find the k-th number in the Odd-Even sequence made of n. The Odd-Even sequence contains first contains all odd numbers from 1 to n then all even numbers in set 1 to n.

Examples :
Input :  n = 5, k = 3
Output : 5
In this example, the Odd-Even  is
{1, 3, 5, 2, 4}. 
The third number in sequence is 5.

Naive Approach :



The first approach is simply make a Odd-Even sequence and then find k-th element in it.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find k-th 
// element in the Odd-Even 
// sequence.
#include <bits/stdc++.h>
using namespace std;
  
int findK(int n, int k)
{
    vector<long> a;
      
    // insert all the odd 
    // numbers from 1 to n. 
    for (int i = 1; i < n; i++) 
        if (i % 2 == 1)
            a.push_back(i);
      
    // insert all the even 
    // numbers from 1 to n.
    for (int i = 1; i < n; i++) 
        if (i % 2 == 0)
            a.push_back(i);
      
    return (a[k - 1]);
}
  
// Driver code
int main()
{
    long n = 10, k = 3;
    cout << findK(n, k) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find k-th 
// element in the Odd-Even 
// sequence. 
import java.util.*;
  
class GFG{
static int findK(int n, int k) 
    ArrayList<Integer> a = new ArrayList<Integer>(n);
      
    // insert all the odd 
    // numbers from 1 to n. 
    for (int i = 1; i < n; i++) 
        if (i % 2 == 1
            a.add(i); 
      
    // insert all the even 
    // numbers from 1 to n. 
    for (int i = 1; i < n; i++) 
        if (i % 2 == 0
            a.add(i); 
      
    return (a.get(k - 1)); 
  
// Driver code 
public static void main(String[] args) 
    int n = 10, k = 3
    System.out.println(findK(n, k)); 
}
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to find 
# k-th element in the
# Odd-Even sequence.
  
def findK (n, k ):
    a = list()
      
    # insert all the odd 
    # numbers from 1 to n.
    i = 1
    while i < n:
        a.append(i)
        i = i + 2
      
    # insert all the even 
    # numbers from 1 to n.
    i = 2
    while i < n:
        a.append(i)
        i = i + 2
          
    return (a[k - 1])
  
# Driver code
n = 10
k = 3
print(findK(n, k))
  
# This code is contributed 
# by "Sharad_Bhardwaj".

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find k-th 
// element in the Odd-Even 
// sequence. 
using System; 
using System.Collections; 
  
class GFG{
static int findK(int n, int k) 
    ArrayList a = new ArrayList(n);
      
    // insert all the odd 
    // numbers from 1 to n. 
    for (int i = 1; i < n; i++) 
        if (i % 2 == 1) 
            a.Add(i); 
      
    // insert all the even 
    // numbers from 1 to n. 
    for (int i = 1; i < n; i++) 
        if (i % 2 == 0) 
            a.Add(i); 
      
    return (int)(a[k - 1]); 
  
// Driver code 
static void Main() 
    int n = 10, k = 3; 
    Console.WriteLine(findK(n, k)); 
}
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find k-th 
// element in the Odd-Even 
// sequence.
  
function findK($n, $k)
{
    $a;
    $index = 0;
      
    // insert all the odd 
    // numbers from 1 to n. 
    for ($i = 1; $i < $n; $i++) 
        if ($i % 2 == 1)
            $a[$index++] = $i;
      
    // insert all the even 
    // numbers from 1 to n.
    for ($i = 1; $i < $n; $i++) 
        if ($i % 2 == 0)
            $a[$index++] = $i;
      
    return ($a[$k - 1]);
}
  
// Driver code
$n = 10;
$k = 3;
echo findK($n, $k);
  
// This code is contributed by mits.
?>

chevron_right



Output :

 5

The time complexity of the above approach is O(n), for an O(1) approach read the approach discussed here.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, Mithun Kumar, gp6

Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.