Skip to content
Related Articles

Related Articles

k-Rough Number or k-Jagged Number

A k-rough or k-jagged number is a number whose smallest prime factor is greater than or equal to the number ‘k’. Given numbers ‘n’ and ‘k’ as input, we are required to find whether ‘n; is a k-rough number or not.
Examples :
 

Input : n = 10, k = 2 
Output : 10 is a 2-rough number 
Explanation: The prime factors of 10 are 2 and 5 Hence its smallest prime factor is 2 which is greater than or equal to k, i.e 2 
Input : n = 55, k = 7 
Output : 55 is not a 7-rough number 
Explanation: The prime factors of 55 are 5 and 11 Hence its smallest prime factor is 5 which is not greater than or equal to k, i.e 7

 

It may be inferred from above that every positive integer, except 1, is a 2-rough number since their smallest prime factor is either 2(for even positive integers) or greater than 2(for odd positive integers).
 

Simple Approach



 

  1. First find all prime numbers up to the number ‘n’.
  2. Next find the smallest prime factor of the number ‘n’ from its prime factorization.
  3. Check if the smallest prime factor is greater than or equal to ‘k’ or not.

 

C++




// CPP to check if n is a k-rough number
// or not
#include <bits/stdc++.h>
using namespace std;
 
// Finds primes by Sieve of Eratosthenes
// method
vector<int> getPrimes(int n)
{
    int i, j;
    bool isPrime[n + 1];
    memset(isPrime, true, sizeof(isPrime));
    for (i = 2; i * i <= n; i++)
    {
 
        // If isPrime[i] is not changed,
        // then it is prime
        if (isPrime[i] == true)
        {
            // Update all multiples of p
            for (j = i * 2; j <= n; j += i)
                isPrime[j] = false;
        }
    }
 
    // Forming array of the prime numbers found
    vector<int> primes;
    for (i = 2; i <= n; i++)
        if (isPrime[i])
            primes.push_back(i);
    return primes;
}
 
// Checking whether a number is k-rough or not
bool isRough(int n, int k)
{
    vector<int> primes = getPrimes(n);
 
    // Finding minimum prime factor of n
    int min_pf = n;
    for (int i = 0; i < primes.size(); i++)
        if (n % primes[i] == 0)
            min_pf = primes[i];
 
    // Return true if minimum prime factor
    // is greater than or equal to k. Else
    // return false.
    return (min_pf >= k);
}
 
// Driver Method
int main()
{
    int n = 75, k = 3;
    if (isRough(n, k))
        cout << n << " is a "
            << k << "-rough number\n";
    else
        cout << n << " is not a "
            << k << "-rough number\n";
    return 0;
}

Java




// Java to check if n is
// a k-rough number or not
import java.io.*;
import java.util.*;
 
class GFG
{
     
    // Finds primes by Sieve
    // of Eratosthenes method
    static ArrayList<Integer> getPrimes(int n)
    {
        int i, j;
        int []isPrime = new int[n + 1];
         
        for(i = 0; i < n + 1; i++)
            isPrime[i] = 1;
         
        for (i = 2; i * i <= n; i++)
        {    
            // If isPrime[i] is not
            // changed, then it is prime
            if (isPrime[i] == 1)
            {
                // Update all
                // multiples of p
                for (j = i * 2; j <= n; j += i)
                    isPrime[j] = 0;
            }
        }
     
        // Forming array of the
        // prime numbers found
        ArrayList<Integer> primes = new ArrayList<Integer>();
        for (i = 2; i <= n; i++)
            if (isPrime[i] == 1)
                primes.add(i);
        return primes;
    }
     
    // Checking whether a
    // number is k-rough or not
    static boolean isRough(int n, int k)
    {
        ArrayList<Integer> primes = getPrimes(n);
         
        // Finding minimum
        // prime factor of n
        int min_pf = n;
        for (int i = 0; i < primes.size(); i++)
            if (n % primes.get(i) == 0)
                min_pf = primes.get(i);
     
        // Return true if minimum
        // prime factor is greater
        // than or equal to k. Else
        // return false.
        return (min_pf >= k);
    }
     
    // Driver Code
    public static void main(String args[])
    {
        int n = 75, k = 3;
        if (isRough(n, k))
            System.out.print(n + " is a " + k +
                            "-rough number\n");
        else
            System.out.print(+ n + " is not a " +
                          k + "-rough number\n");
    }
}
// This code is contributed by
// Manish Shaw.(manishshaw1)

Python3




# Python3 to check if n is a k-rough
# number or not
 
# Finds primes by Sieve of Eratosthenes method
def getPrimes(n):
 
    isPrime = [True] * (n + 1);
    i = 2;
    while (i * i <= n):
 
        # If isPrime[i] is not changed,
        # then it is prime
        if (isPrime[i] == True):
             
            # Update all multiples of p
            j = i * 2;
            while (j <= n):
                isPrime[j] = False;
                j += i;
        i += 1;
 
    # Forming array of the
    # prime numbers found
    primes = [];
    for i in range(2, n + 1):
        if (isPrime[i]):
            primes.append(i);
    return primes;
 
# Checking whether a
# number is k-rough or not
def isRough(n, k):
 
    primes = getPrimes(n);
 
    # Finding minimum
    # prime factor of n
    min_pf = n;
    for i in range(len(primes)):
        if (n % primes[i] == 0):
            min_pf = primes[i];
 
    # Return true if minimum
    # prime factor is greater
    # than or equal to k. Else
    # return false.
    return (min_pf >= k);
 
# Driver Code
n = 75;
k = 3;
if (isRough(n, k)):
    print(n, "is a", k,"-rough number");
else:
    print(n, "is not a", k, "-rough number");
         
# This code is contributed by mits

C#




// C# to check if n is a k-rough number
// or not
using System;
using System.Collections.Generic;
using System.Linq;
 
class GFG {
     
    // Finds primes by Sieve of Eratosthenes
    // method
    static List<int> getPrimes(int n)
    {
        int i, j;
        int []isPrime = new int[n + 1];
         
        for(i = 0; i < n + 1; i++)
            isPrime[i] = 1;
        // Array.Clear(isPrime, 1, isPrime.Length);
         
        for (i = 2; i * i <= n; i++)
        {
     
            // If isPrime[i] is not changed,
            // then it is prime
            if (isPrime[i] == 1)
            {
                // Update all multiples of p
                for (j = i * 2; j <= n; j += i)
                    isPrime[j] = 0;
            }
        }
     
        // Forming array of the prime numbers
        // found
        List<int> primes = new List<int>();
        for (i = 2; i <= n; i++)
            if (isPrime[i] == 1)
                primes.Add(i);
        return primes;
    }
     
    // Checking whether a number is k-rough
    // or not
    static bool isRough(int n, int k)
    {
        List<int> primes = getPrimes(n);
         
        // Finding minimum prime factor of n
        int min_pf = n;
        for (int i = 0; i < primes.Count; i++)
            if (n % primes[i] == 0)
                min_pf = primes[i];
     
        // Return true if minimum prime factor
        // is greater than or equal to k. Else
        // return false.
        return (min_pf >= k);
    }
     
    // Driver Method
    static void Main()
    {
        int n = 75, k = 3;
        if (isRough(n, k))
            Console.Write(n + " is a " + k +
                         "-rough number\n");
        else
            Console.Write(+ n + " is not a "
                   + k + "-rough number\n");
    }
}
 
// This code is contributed by manishshaw.

PHP




<?php
// PHP to check if n is
// a k-rough number or not
 
// Finds primes by Sieve
// of Eratosthenes method
function getPrimes($n)
{
    $isPrime = array_fill(0, ($n + 1), true);
    for ($i = 2;
         $i * $i <= $n; $i++)
    {
 
        // If isPrime[i] is
        // not changed,
        // then it is prime
        if ($isPrime[$i] == true)
        {
            // Update all
            // multiples of p
            for ($j = $i * 2;
                 $j <= $n; $j += $i)
                $isPrime[$j] = false;
        }
    }
 
    // Forming array of the
    // prime numbers found
    $primes = array();
    $k = 0;
    for ($i = 2; $i <= $n; $i++)
        if ($isPrime[$i])
            $primes[$k++]=$i;
    return $primes;
}
 
// Checking whether a
// number is k-rough or not
function isRough($n, $k)
{
    $primes = getPrimes($n);
 
    // Finding minimum
    // prime factor of n
    $min_pf = $n;
    for ($i = 0;
         $i < count($primes); $i++)
        if ($n % $primes[$i] == 0)
            $min_pf = $primes[$i];
 
    // Return true if minimum
    // prime factor is greater
    // than or equal to k. Else
    // return false.
    return ($min_pf >= $k);
}
 
// Driver Code
$n = 75;
$k = 3;
if (isRough($n, $k))
    echo $n . " is a " .
         $k . "-rough number\n";
else
    echo $n . " is not a " .
         $k . "-rough number\n";
          
// This code is contributed by mits
?>

Output: 
 

75 is a 3-rough number

 

Efficient Solution :

The idea is based on Efficient program to print all prime factors of a given number
 

  1. If n is divisible by 2 (smallest prime number), then we return true if k is smaller than or equal to 2. Else we return false.
  2. Then we one by one try all odd numbers. As soon as we find an odd number that divides n, we compare it with k and return true if the odd number is greater than or equal to k, else false. This solution works because if a prime number does not divide n, then its multiples will also not divide.

 

C++




// CPP program to check if given n is
// k-rough or not.
# include <bits/stdc++.h>
using namespace std;
 
// Returns true if n is k rough else false
bool isKRough(int n, int k)
{
    // If n is even, then smallest prime
    // factor becomes 2.
    if (n % 2 == 0)
        return (k <= 2);
 
    // n must be odd at this point.  So we
    // can skip one element (Note i = i +2)
    for (int i = 3; i*i <= n; i = i+2)
        if (n%i == 0)
            return (i >= k);
 
   return (n >= k);
}
 
/* Driver program to test above function */
int main()
{
    int n = 75, k = 3;
    if (isKRough(n, k))
        cout << n << " is a "
             << k << "-rough number\n";
    else
        cout << n << " is not a "
             << k << "-rough number\n";
    return 0;
}

Java




// Java program to check if given n is
// k-rough or not.
 
class GFG {
     
// Returns true if n is k rough else false
static boolean isKRough(int n, int k)
{
    // If n is even, then smallest
    // prime factor becomes 2.
    if (n % 2 == 0)
        return (k <= 2);
 
    // n must be odd at this point. So we
    // can skip one element (Note i = i + 2)
    for (int i = 3; i*i <= n; i = i + 2)
        if (n % i == 0)
            return (i >= k);
 
return (n >= k);
}
 
/* Driver program to test above function */
public static void main(String[] args)
{
    int n = 75, k = 3;
    if (isKRough(n, k))
        System.out.println(n + " is a " +
                     k + "-rough number");
    else
        System.out.println(n + " is not a " +
                        k + "-rough number");
}
}
 
// This code is contributed by Smitha

Python3




# Python3 program to check if given n
# is k-rough or not.
 
# Returns true if n is k rough else false
def isKRough(n, k):
     
    # If n is even, then smallest
    # prime factor becomes 2.
    if(n % 2 == 0):
        return (k <= 2);
         
    # n must be odd at this point.
    # So we can skip one element
    # (Note i = i +2)
    i = 3;
    while(i * i <= n):
        if(n % i == 0):
            return (i >= k);
        i = i + 2;
     
    return (n >= k);
 
# Driver Code
n = 75;
k = 3;
if (isKRough(n, k)):
    print(n, "is a", k, "-rough number");
else:
    print(n, "is not a", k, "-rough number");
     
# This code is contributed by mits

C#




// C# program to check if given n is
// k-rough or not.
using System;
 
class GFG {
     
// Returns true if n is k rough else false
static bool isKRough(int n, int k)
{
    // If n is even, then smallest prime
    // factor becomes 2.
    if (n % 2 == 0)
        return (k <= 2);
 
    // n must be odd at this point. So we
    // can skip one element (Note i = i + 2)
    for (int i = 3; i*i <= n; i = i + 2)
        if (n % i == 0)
            return (i >= k);
 
return (n >= k);
}
 
/* Driver program to test above function */
public static void Main()
{
    int n = 75, k = 3;
    if (isKRough(n, k))
        Console.Write(n + " is a " +
             k + "-rough number\n");
    else
        Console.Write(n + " is not a " +
                 k + "-rough number\n");
}
}
 
// This code is contributed by Smitha

PHP




<?php
// PHP program to check if
// given n is k-rough or not.
 
// Returns true if n is k
// rough else false
function isKRough($n, $k)
{
    // If n is even, then smallest
    // prime factor becomes 2.
    if ($n % 2 == 0)
        return ($k <= 2);
 
    // n must be odd at this point.
    // So we can skip one element
    // (Note i = i +2)
    for ($i = 3; $i * $i <= $n; $i = $i + 2)
        if ($n % $i == 0)
            return ($i >= $k);
 
return ($n >= $k);
}
 
// Driver Code
$n = 75;
$k = 3;
if (isKRough($n, $k))
    echo $n . " is a " . $k .
           "-rough number\n";
else
    echo $n . " is not a " . $k .
               "-rough number\n";
     
// This code is contributed by Sam007
?>

Javascript




<script>
// Javascript program to check if
// given n is k-rough or not.
 
// Returns true if n is k
// rough else false
function isKRough(n, k)
{
 
    // If n is even, then smallest
    // prime factor becomes 2.
    if (n % 2 == 0)
        return (k <= 2);
 
    // n must be odd at this point.
    // So we can skip one element
    // (Note i = i +2)
    for (let i = 3; i * i <= n; i = i + 2)
        if (n % i == 0)
            return (i >= k);
 
return (n >= k);
}
 
// Driver Code
let n = 75;
let k = 3;
if (isKRough(n, k))
    document.write( n + " is a " + k + "-rough number<br>");
else
    document.write( n + " is not a " + k + "-rough number<br>");
     
// This code is contributed by sravan kumar
</script>

Output : 
 

75 is a 3-rough number

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :