# K-Primes (Numbers with k prime factors) in a range

Given three integers A, B and K. We need to find no. of K-prime numbers in the range [A, B]. A number is called K-prime if it has exactly K distinct prime factors.

Examples:

```Input : A = 4, B = 10, K = 2.
Output : 6 10
Given range is [4, 5, 6, 7, 8, 9, 10].
From the above range 6 and 10 have 2 distinct
prime factors, 6 = 3*2; 10 = 5*2.

Input : A = 14, B = 18, K = 2.
Output : 14 15 18
Range = [14, 15].
Both 14, 15 and 18 have 2 distinct prime factors,
14 = 7*2, 15 = 3*5 and 18 = 2*3*3
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A simple solution is to traverse through given range. For every element of the range, find its prime factors. Finally print all those numbers whose prime factors are k.

An efficient solution is to use Sieve Of Eratosthenes Algorithm

```prime[n] = {true};
for (int p=2; p*p<=n; p++)
{
// If prime[p] is not changed, then
// it is a prime
if (prime[p] == true)
{
// Update all multiples of p
for (int i=p*2; i<=n; i += p)
prime[i] = false;
}
}
```

If we observe the above algorithm clearly it has a property of iterating through all the multiples of prime numbers less than N. So the number of times the algorithm marks a number not prime is equal to the number of prime factors of that number. To achieve this, maintain an array called marked and increase the count of a number every time when it is marked as not prime by the algorithm. And in the next step, we iterate through all the numbers in the range [A, B] and increase our count of k-prime numbers if marked[number] == K.

## C++

 `// CPP program to count all those numbers in ` `// given range whose count of prime factors  ` `// is k ` `#include ` `using` `namespace` `std; ` ` `  `void` `printKPFNums(``int` `A, ``int` `B, ``int` `K) ` `{ ` `    ``// Count prime factors of all numbers ` `    ``// till B. ` `    ``bool` `prime[B+1] = { ``true` `}; ` `    ``int` `p_factors[B+1] = { 0 }; ` `    ``for` `(``int` `p = 2; p <= B; p++)  ` `        ``if` `(p_factors[p] == 0)  ` `            ``for` `(``int` `i = p; i <= B; i += p)  ` `                ``p_factors[i]++; ` ` `  `    ``// Print all numbers with k prime factors ` `    ``for` `(``int` `i = A; i <= B; i++)  ` `        ``if` `(p_factors[i] == K) ` `            ``cout << i << ``" "``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `A = 14, B = 18, K = 2; ` `    ``printKPFNums(A, B, K); ` `    ``return` `0; ` `} `

## Java

 `// Java program to count ` `// all those numbers in ` `// given range whose count ` `// of prime factors  ` `// is k ` ` `  `import` `java.io.*; ` `import` `java.util.*; ` ` `  `class` `GFG { ` `     `  `    ``static` `void` `printKPFNums(``int` `A, ``int` `B, ``int` `K) ` `    ``{ ` `        ``// Count prime factors of all numbers ` `        ``// till B. ` `        ``boolean` `prime[] = ``new` `boolean``[B+``1``]; ` `        ``Arrays.fill(prime,``true``); ` `        ``int` `p_factors[] = ``new` `int``[B+``1``]; ` `        ``Arrays.fill(p_factors,``0``); ` ` `  `        ``for` `(``int` `p = ``2``; p <= B; p++)  ` `            ``if` `(p_factors[p] == ``0``)  ` `                ``for` `(``int` `i = p; i <= B; i += p)  ` `                    ``p_factors[i]++; ` `      `  `        ``// Print all numbers with k prime factors ` `        ``for` `(``int` `i = A; i <= B; i++)  ` `            ``if` `(p_factors[i] == K) ` `                ``System.out.print( i + ``" "``); ` `    ``} ` `      `  `    ``// Driver code ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``int` `A = ``14``, B = ``18``, K = ``2``; ` `        ``printKPFNums(A, B, K); ` `    ``} ` `} ` ` `  ` `  `// This code is contributed ` `// by Nikita Tiwari. `

## Python3

 `# Python 3 program to count ` `# all those numbers in ` `# given range whose count ` `# of prime factors  ` `# is k ` ` `  `def` `printKPFNums(A, B, K) : ` ` `  `    ``# Count prime factors ` `    ``# of all numbers ` `    ``# till B. ` `    ``prime ``=` `[ ``True``]``*``(B``+``1``) ` `    ``p_factors``=` `[ ``0` `]``*``(B``+``1``) ` `    ``for` `p ``in` `range``(``2``,B``+``1``) : ` `        ``if` `(p_factors[p] ``=``=` `0``)  : ` `            ``for` `i ``in` `range``(p,B``+``1``,p) : ` `                ``p_factors[i] ``=` `p_factors[i] ``+` `1` `  `  `    ``# Print all numbers with ` `    ``# k prime factors ` `    ``for` `i ``in` `range``(A,B``+``1``) : ` `        ``if` `(p_factors[i] ``=``=` `K) : ` `            ``print``( i ,end``=``" "``) ` ` `  ` `  `# Driver code ` `A ``=` `14` `B ``=` `18` `K ``=` `2` `printKPFNums(A, B, K) ` ` `  ` `  `# This code is contributed ` `# by Nikita Tiwari. `

## C#

 `// C# program to count all ` `// those numbers in given ` `// range whose count of ` `// prime factors is k ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``static` `void` `printKPFNums(``int` `A, ``int` `B, ` `                                    ``int` `K) ` `    ``{ ` `        ``// Count prime factors of  ` `        ``// all numbers till B. ` `        ``bool` `[]prime = ``new` `bool``[B + 1]; ` `         `  `        ``for``(``int` `i = 0; i < B + 1; i++) ` `            ``prime[i] = ``true``; ` `             `  `        ``int` `[]p_factors = ``new` `int``[B + 1]; ` `         `  `        ``for``(``int` `i = 0; i < B + 1; i++) ` `            ``p_factors[i] = 0; ` ` `  `        ``for` `(``int` `p = 2; p <= B; p++)  ` `            ``if` `(p_factors[p] == 0)  ` `                ``for` `(``int` `i = p; i <= B; i += p)  ` `                    ``p_factors[i]++; ` `     `  `        ``// Print all numbers with ` `        ``// k prime factors ` `        ``for` `(``int` `i = A; i <= B; i++)  ` `            ``if` `(p_factors[i] == K) ` `                ``Console.Write( i + ``" "``); ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `A = 14, B = 18, K = 2; ` `        ``printKPFNums(A, B, K); ` `    ``} ` `} ` ` `  `// This code is contributed by nitin mittal. `

## PHP

 ` `

Output:

```14 15 18
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : nitin mittal, chitranayal

Article Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.