Skip to content
Related Articles

Related Articles

Jump Search

View Discussion
Improve Article
Save Article
Like Article
  • Difficulty Level : Easy
  • Last Updated : 25 Jun, 2022

Like Binary Search, Jump Search is a searching algorithm for sorted arrays. The basic idea is to check fewer elements (than linear search) by jumping ahead by fixed steps or skipping some elements in place of searching all elements.
For example, suppose we have an array arr[] of size n and a block (to be jumped) of size m. Then we search in the indexes arr[0], arr[m], arr[2m]…..arr[km] and so on. Once we find the interval (arr[km] < x < arr[(k+1)m]), we perform a linear search operation from the index km to find the element x.
Let’s consider the following array: (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610). The length of the array is 16. The Jump search will find the value of 55 with the following steps assuming that the block size to be jumped is 4. 
STEP 1: Jump from index 0 to index 4; 
STEP 2: Jump from index 4 to index 8; 
STEP 3: Jump from index 8 to index 12; 
STEP 4: Since the element at index 12 is greater than 55, we will jump back a step to come to index 8. 
STEP 5: Perform a linear search from index 8 to get the element 55.

Performance in comparison to linear and binary search:

If we compare it with linear and binary search then it comes out than it is better than linear search but not better than binary search.

The increasing order of performance is:

linear search  <  jump search  <  binary search

What is the optimal block size to be skipped? 
In the worst case, we have to do n/m jumps, and if the last checked value is greater than the element to be searched for, we perform m-1 comparisons more for linear search. Therefore, the total number of comparisons in the worst case will be ((n/m) + m-1). The value of the function ((n/m) + m-1) will be minimum when m = √n. Therefore, the best step size is m = √n.
 

C++




// C++ program to implement Jump Search
  
#include <bits/stdc++.h>
using namespace std;
  
int jumpSearch(int arr[], int x, int n)
{
    // Finding block size to be jumped
    int step = sqrt(n);
  
    // Finding the block where element is
    // present (if it is present)
    int prev = 0;
    while (arr[min(step, n)-1] < x)
    {
        prev = step;
        step += sqrt(n);
        if (prev >= n)
            return -1;
    }
  
    // Doing a linear search for x in block
    // beginning with prev.
    while (arr[prev] < x)
    {
        prev++;
  
        // If we reached next block or end of
        // array, element is not present.
        if (prev == min(step, n))
            return -1;
    }
    // If element is found
    if (arr[prev] == x)
        return prev;
  
    return -1;
}
  
// Driver program to test function
int main()
{
    int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
                34, 55, 89, 144, 233, 377, 610 };
    int x = 55;
    int n = sizeof(arr) / sizeof(arr[0]);
      
    // Find the index of 'x' using Jump Search
    int index = jumpSearch(arr, x, n);
  
    // Print the index where 'x' is located
    cout << "\nNumber " << x << " is at index " << index;
    return 0;
}
  
// Contributed by nuclode

C




#include<stdio.h>
#include<math.h>
int min(int a, int b){
    if(b>a)
      return a;
      else
      return b;
}
int jumpsearch(int arr[], int x, int n)
{
      // Finding block size to be jumped
    int step = sqrt(n);
  
    // Finding the block where element is
    // present (if it is present)
    int prev = 0;
    while (arr[min(step, n)-1] < x)
    {
        prev = step;
        step += sqrt(n);
        if (prev >= n)
            return -1;
    }
  
    // Doing a linear search for x in block
    // beginning with prev.
    while (arr[prev] < x)
    {
        prev++;
  
        // If we reached next block or end of
        // array, element is not present.
        if (prev == min(step, n))
            return -1;
    }
    // If element is found
    if (arr[prev] == x)
        return prev;
  
    return -1;
}
int main()
{
    int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610};
    int x = 55;
    int n = sizeof(arr)/sizeof(arr[0]);
    int index = jumpsearch(arr, x, n);
    if(index >= 0)
    printf("Number is at %d index",index);
    else
    printf("Number is not exist in the array");
    return 0;
}
  
// This code is contributed by Susobhan Akhuli

Java




// Java program to implement Jump Search.
public class JumpSearch
{
    public static int jumpSearch(int[] arr, int x)
    {
        int n = arr.length;
  
        // Finding block size to be jumped
        int step = (int)Math.floor(Math.sqrt(n));
  
        // Finding the block where element is
        // present (if it is present)
        int prev = 0;
        while (arr[Math.min(step, n)-1] < x)
        {
            prev = step;
            step += (int)Math.floor(Math.sqrt(n));
            if (prev >= n)
                return -1;
        }
  
        // Doing a linear search for x in block
        // beginning with prev.
        while (arr[prev] < x)
        {
            prev++;
  
            // If we reached next block or end of
            // array, element is not present.
            if (prev == Math.min(step, n))
                return -1;
        }
  
        // If element is found
        if (arr[prev] == x)
            return prev;
  
        return -1;
    }
  
    // Driver program to test function
    public static void main(String [ ] args)
    {
        int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
                    34, 55, 89, 144, 233, 377, 610};
        int x = 55;
  
        // Find the index of 'x' using Jump Search
        int index = jumpSearch(arr, x);
  
        // Print the index where 'x' is located
        System.out.println("\nNumber " + x +
                            " is at index " + index);
    }
}

Python3




# Python3 code to implement Jump Search
import math
  
def jumpSearch( arr , x , n ):
      
    # Finding block size to be jumped
    step = math.sqrt(n)
      
    # Finding the block where element is
    # present (if it is present)
    prev = 0
    while arr[int(min(step, n)-1)] < x:
        prev = step
        step += math.sqrt(n)
        if prev >= n:
            return -1
      
    # Doing a linear search for x in 
    # block beginning with prev.
    while arr[int(prev)] < x:
        prev += 1
          
        # If we reached next block or end 
        # of array, element is not present.
        if prev == min(step, n):
            return -1
      
    # If element is found
    if arr[int(prev)] == x:
        return prev
      
    return -1
  
# Driver code to test function
arr = [ 0, 1, 1, 2, 3, 5, 8, 13, 21,
    34, 55, 89, 144, 233, 377, 610 ]
x = 55
n = len(arr)
  
# Find the index of 'x' using Jump Search
index = jumpSearch(arr, x, n)
  
# Print the index where 'x' is located
print("Number" , x, "is at index" ,"%.0f"%index)
  
# This code is contributed by "Sharad_Bhardwaj".

C#




// C# program to implement Jump Search.
using System;
public class JumpSearch
{
    public static int jumpSearch(int[] arr, int x)
    {
        int n = arr.Length;
  
        // Finding block size to be jumped
        int step = (int)Math.Sqrt(n);
  
        // Finding the block where element is
        // present (if it is present)
        int prev = 0;
        while (arr[Math.Min(step, n)-1] < x)
        {
            prev = step;
            step += (int)Math.Sqrt(n);
            if (prev >= n)
                return -1;
        }
  
        // Doing a linear search for x in block
        // beginning with prev.
        while (arr[prev] < x)
        {
            prev++;
  
            // If we reached next block or end of
            // array, element is not present.
            if (prev == Math.Min(step, n))
                return -1;
        }
  
        // If element is found
        if (arr[prev] == x)
            return prev;
  
        return -1;
    }
  
    // Driver program to test function
    public static void Main()
    {
        int[] arr = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
                    34, 55, 89, 144, 233, 377, 610};
        int x = 55;
  
        // Find the index of 'x' using Jump Search
        int index = jumpSearch(arr, x);
  
        // Print the index where 'x' is located
        Console.Write("Number " + x +
                            " is at index " + index);
    }
}

PHP




<?php 
// PHP program to implement Jump Search
  
function jumpSearch($arr, $x, $n)
{
    // Finding block size to be jumped
    $step = sqrt($n);
  
    // Finding the block where element is
    // present (if it is present)
    $prev = 0;
    while ($arr[min($step, $n)-1] < $x)
    {
        $prev = $step;
        $step += sqrt($n);
        if ($prev >= $n)
            return -1;
    }
  
    // Doing a linear search for x in block
    // beginning with prev.
    while ($arr[$prev] < $x)
    {
        $prev++;
  
        // If we reached next block or end of
        // array, element is not present.
        if ($prev == min($step, $n))
            return -1;
    }
    // If element is found
    if ($arr[$prev] == $x)
        return $prev;
  
    return -1;
}
  
// Driver program to test function
$arr = array( 0, 1, 1, 2, 3, 5, 8, 13, 21,
                34, 55, 89, 144, 233, 377, 610 );
$x = 55;
$n = sizeof($arr) / sizeof($arr[0]);
      
// Find the index of '$x' using Jump Search
$index = jumpSearch($arr, $x, $n);
  
// Print the index where '$x' is located
echo "Number ".$x." is at index " .$index;
return 0;
?>

Javascript




<script>
// Javascript program to implement Jump Search
  
function jumpSearch(arr, x, n) 
    // Finding block size to be jumped 
    let step = Math.sqrt(n); 
    
    // Finding the block where element is 
    // present (if it is present) 
    let prev = 0; 
    while (arr[Math.min(step, n)-1] < x) 
    
        prev = step; 
        step += Math.sqrt(n); 
        if (prev >= n) 
            return -1; 
    
    
    // Doing a linear search for x in block 
    // beginning with prev. 
    while (arr[prev] < x) 
    
        prev++; 
    
        // If we reached next block or end of 
        // array, element is not present. 
        if (prev == Math.min(step, n)) 
            return -1; 
    
    // If element is found 
    if (arr[prev] == x) 
        return prev; 
    
    return -1; 
  
// Driver program to test function 
let arr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 
                34, 55, 89, 144, 233, 377, 610]; 
let x = 55; 
let n = arr.length; 
        
// Find the index of 'x' using Jump Search 
let index = jumpSearch(arr, x, n); 
    
// Print the index where 'x' is located 
document.write(`Number ${x} is at index ${index}`); 
    
// This code is contributed by _saurabh_jaiswal
</script>

Output: 
 

Number 55 is at index 10

Time Complexity : O(√n) 
Auxiliary Space : O(1)
Important points: 
 

  • Works only with sorted arrays.
  • The optimal size of a block to be jumped is (√ n). This makes the time complexity of Jump Search O(√ n).
  • The time complexity of Jump Search is between Linear Search ((O(n)) and Binary Search (O(Log n)).
  • Binary Search is better than Jump Search, but Jump Search has the advantage that we traverse back only once (Binary Search may require up to O(Log n) jumps, consider a situation where the element to be searched is the smallest element or just bigger than the smallest). So, in a system where binary search is costly, we use Jump Search.

 

Check out: DSA Self Paced Course

 

References: 
https://en.wikipedia.org/wiki/Jump_search
This article is contributed by Harsh Agarwal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!