Skip to content
Related Articles

Related Articles

Java Program to print all permutations of a given string

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 10 Dec, 2021

A permutation also called an “arrangement number” or “order,” is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself. A string of length n has n! permutation. 

Source: Mathword(http://mathworld.wolfram.com/Permutation.html)

Below are the permutations of string ABC. 
ABC ACB BAC BCA CBA CAB

Here is a solution that is used as a basis in backtracking.

NewPermutation

Java




// Java program to print all 
// permutations of a given string. 
public class Permutation 
    public static void main(String[] args) 
    
        String str = "ABC"
        int n = str.length(); 
        Permutation permutation = 
        new Permutation(); 
        permutation.permute(str, 0, n-1); 
    
  
    /* Permutation function @param str 
       string to calculate permutation 
       for @param l starting index 
       @param r end index */
    private void permute(String str, 
                         int l, int r) 
    
        if (l == r) 
            System.out.println(str); 
        else
        
            for (int i = l; i <= r; i++) 
            
                str = swap(str,l,i); 
                permute(str, l+1, r); 
                str = swap(str,l,i); 
            
        
    
  
    /* Swap Characters at position 
       @param a string value @param 
       i position 1 @param j position 2 
       @return swapped string */
    public String swap(String a, 
                       int i, int j) 
    
        char temp; 
        char[] charArray = a.toCharArray(); 
        temp = charArray[i] ; 
        charArray[i] = charArray[j]; 
        charArray[j] = temp; 
        return String.valueOf(charArray); 
    
// This code is contributed by Mihir Joshi 

Output: 

ABC
ACB
BAC
BCA
CBA
CAB

Algorithm Paradigm: Backtracking 

Time Complexity: O(n*n!) Note that there are n! permutations and it requires O(n) time to print a permutation.

Auxiliary Space: O(r – l)

Note: The above solution prints duplicate permutations if there are repeating characters in the input string. Please see the below link for a solution that prints only distinct permutations even if there are duplicates in input.
Print all distinct permutations of a given string with duplicates. 
Permutations of a given string using STL

Another approach:

Java




import java.util.*;
// Java program to implement
// the above approach
class GFG{
   
static void permute(String s, 
                    String answer)
{   
    if (s.length() == 0)
    {
        System.out.print(answer + "  ");
        return;
    }
      
    for(int i = 0 ;i < s.length(); i++)
    {
        char ch = s.charAt(i);
        String left_substr = s.substring(0, i);
        String right_substr = s.substring(i + 1);
        String rest = left_substr + right_substr;
        permute(rest, answer + ch);
    }
}
  
// Driver code
public static void main(String args[])
{
    Scanner scan = new Scanner(System.in);    
    String s;
    String answer="";
      
    System.out.print(
    "Enter the string : ");
    s = scan.next();
      
    System.out.print(
    "\nAll possible strings are : ");
    permute(s, answer);
}
}
// This code is contributed by adityapande88

Output:

Enter the string : abc
All possible strings are : abc  acb  bac  bca  cab  cba

Time Complexity: O(n*n!) The time complexity is the same as the above approach, i.e. there are n! permutations and it requires O(n) time to print a permutation.

Auxiliary Space: O(|s|)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!